/* dppt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b14 = 1.; /* Subroutine */ int dppt01_(char *uplo, integer *n, doublereal *a, doublereal *afac, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer i__1; /* Local variables */ integer i__, k; doublereal t; integer kc; doublereal eps; integer npp; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); extern /* Subroutine */ int dspr_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *), dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); doublereal anorm; extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *, doublereal *, doublereal *, integer *); extern doublereal dlamch_(char *), dlansp_(char *, char *, integer *, doublereal *, doublereal *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DPPT01 reconstructs a symmetric positive definite packed matrix A */ /* from its L*L' or U'*U factorization and computes the residual */ /* norm( L*L' - A ) / ( N * norm(A) * EPS ) or */ /* norm( U'*U - A ) / ( N * norm(A) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* symmetric matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ /* The original symmetric matrix A, stored as a packed */ /* triangular matrix. */ /* AFAC (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ /* On entry, the factor L or U from the L*L' or U'*U */ /* factorization of A, stored as a packed triangular matrix. */ /* Overwritten with the reconstructed matrix, and then with the */ /* difference L*L' - A (or U'*U - A). */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RESID (output) DOUBLE PRECISION */ /* If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) */ /* If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 */ /* Parameter adjustments */ --rwork; --afac; --a; /* Function Body */ if (*n <= 0) { *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); anorm = dlansp_("1", uplo, n, &a[1], &rwork[1]); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute the product U'*U, overwriting U. */ if (lsame_(uplo, "U")) { kc = *n * (*n - 1) / 2 + 1; for (k = *n; k >= 1; --k) { /* Compute the (K,K) element of the result. */ t = ddot_(&k, &afac[kc], &c__1, &afac[kc], &c__1); afac[kc + k - 1] = t; /* Compute the rest of column K. */ if (k > 1) { i__1 = k - 1; dtpmv_("Upper", "Transpose", "Non-unit", &i__1, &afac[1], & afac[kc], &c__1); kc -= k - 1; } /* L10: */ } /* Compute the product L*L', overwriting L. */ } else { kc = *n * (*n + 1) / 2; for (k = *n; k >= 1; --k) { /* Add a multiple of column K of the factor L to each of */ /* columns K+1 through N. */ if (k < *n) { i__1 = *n - k; dspr_("Lower", &i__1, &c_b14, &afac[kc + 1], &c__1, &afac[kc + *n - k + 1]); } /* Scale column K by the diagonal element. */ t = afac[kc]; i__1 = *n - k + 1; dscal_(&i__1, &t, &afac[kc], &c__1); kc -= *n - k + 2; /* L20: */ } } /* Compute the difference L*L' - A (or U'*U - A). */ npp = *n * (*n + 1) / 2; i__1 = npp; for (i__ = 1; i__ <= i__1; ++i__) { afac[i__] -= a[i__]; /* L30: */ } /* Compute norm( L*U - A ) / ( N * norm(A) * EPS ) */ *resid = dlansp_("1", uplo, n, &afac[1], &rwork[1]); *resid = *resid / (doublereal) (*n) / anorm / eps; return 0; /* End of DPPT01 */ } /* dppt01_ */