/* dgtt05.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int dgtt05_(char *trans, integer *n, integer *nrhs, doublereal *dl, doublereal *d__, doublereal *du, doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *xact, integer * ldxact, doublereal *ferr, doublereal *berr, doublereal *reslts) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, xact_dim1, xact_offset, i__1, i__2; doublereal d__1, d__2, d__3, d__4; /* Local variables */ integer i__, j, k, nz; doublereal eps, tmp, diff, axbi; integer imax; doublereal unfl, ovfl; extern logical lsame_(char *, char *); doublereal xnorm; extern doublereal dlamch_(char *); extern integer idamax_(integer *, doublereal *, integer *); doublereal errbnd; logical notran; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGTT05 tests the error bounds from iterative refinement for the */ /* computed solution to a system of equations A*X = B, where A is a */ /* general tridiagonal matrix of order n and op(A) = A or A**T, */ /* depending on TRANS. */ /* RESLTS(1) = test of the error bound */ /* = norm(X - XACT) / ( norm(X) * FERR ) */ /* A large value is returned if this ratio is not less than one. */ /* RESLTS(2) = residual from the iterative refinement routine */ /* = the maximum of BERR / ( NZ*EPS + (*) ), where */ /* (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i ) */ /* and NZ = max. number of nonzeros in any row of A, plus 1 */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations. */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ /* N (input) INTEGER */ /* The number of rows of the matrices X and XACT. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of columns of the matrices X and XACT. NRHS >= 0. */ /* DL (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) sub-diagonal elements of A. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The diagonal elements of A. */ /* DU (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) super-diagonal elements of A. */ /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* The right hand side vectors for the system of linear */ /* equations. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* The computed solution vectors. Each vector is stored as a */ /* column of the matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* XACT (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* The exact solution vectors. Each vector is stored as a */ /* column of the matrix XACT. */ /* LDXACT (input) INTEGER */ /* The leading dimension of the array XACT. LDXACT >= max(1,N). */ /* FERR (input) DOUBLE PRECISION array, dimension (NRHS) */ /* The estimated forward error bounds for each solution vector */ /* X. If XTRUE is the true solution, FERR bounds the magnitude */ /* of the largest entry in (X - XTRUE) divided by the magnitude */ /* of the largest entry in X. */ /* BERR (input) DOUBLE PRECISION array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector (i.e., the smallest relative change in any entry of A */ /* or B that makes X an exact solution). */ /* RESLTS (output) DOUBLE PRECISION array, dimension (2) */ /* The maximum over the NRHS solution vectors of the ratios: */ /* RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) */ /* RESLTS(2) = BERR / ( NZ*EPS + (*) ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 or NRHS = 0. */ /* Parameter adjustments */ --dl; --d__; --du; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; xact_dim1 = *ldxact; xact_offset = 1 + xact_dim1; xact -= xact_offset; --ferr; --berr; --reslts; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { reslts[1] = 0.; reslts[2] = 0.; return 0; } eps = dlamch_("Epsilon"); unfl = dlamch_("Safe minimum"); ovfl = 1. / unfl; notran = lsame_(trans, "N"); nz = 4; /* Test 1: Compute the maximum of */ /* norm(X - XACT) / ( norm(X) * FERR ) */ /* over all the vectors X and XACT using the infinity-norm. */ errbnd = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { imax = idamax_(n, &x[j * x_dim1 + 1], &c__1); /* Computing MAX */ d__2 = (d__1 = x[imax + j * x_dim1], abs(d__1)); xnorm = max(d__2,unfl); diff = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = diff, d__3 = (d__1 = x[i__ + j * x_dim1] - xact[i__ + j * xact_dim1], abs(d__1)); diff = max(d__2,d__3); /* L10: */ } if (xnorm > 1.) { goto L20; } else if (diff <= ovfl * xnorm) { goto L20; } else { errbnd = 1. / eps; goto L30; } L20: if (diff / xnorm <= ferr[j]) { /* Computing MAX */ d__1 = errbnd, d__2 = diff / xnorm / ferr[j]; errbnd = max(d__1,d__2); } else { errbnd = 1. / eps; } L30: ; } reslts[1] = errbnd; /* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where */ /* (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i ) */ i__1 = *nrhs; for (k = 1; k <= i__1; ++k) { if (notran) { if (*n == 1) { axbi = (d__1 = b[k * b_dim1 + 1], abs(d__1)) + (d__2 = d__[1] * x[k * x_dim1 + 1], abs(d__2)); } else { axbi = (d__1 = b[k * b_dim1 + 1], abs(d__1)) + (d__2 = d__[1] * x[k * x_dim1 + 1], abs(d__2)) + (d__3 = du[1] * x[k * x_dim1 + 2], abs(d__3)); i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { tmp = (d__1 = b[i__ + k * b_dim1], abs(d__1)) + (d__2 = dl[i__ - 1] * x[i__ - 1 + k * x_dim1], abs(d__2)) + (d__3 = d__[i__] * x[i__ + k * x_dim1], abs( d__3)) + (d__4 = du[i__] * x[i__ + 1 + k * x_dim1] , abs(d__4)); axbi = min(axbi,tmp); /* L40: */ } tmp = (d__1 = b[*n + k * b_dim1], abs(d__1)) + (d__2 = dl[*n - 1] * x[*n - 1 + k * x_dim1], abs(d__2)) + (d__3 = d__[*n] * x[*n + k * x_dim1], abs(d__3)); axbi = min(axbi,tmp); } } else { if (*n == 1) { axbi = (d__1 = b[k * b_dim1 + 1], abs(d__1)) + (d__2 = d__[1] * x[k * x_dim1 + 1], abs(d__2)); } else { axbi = (d__1 = b[k * b_dim1 + 1], abs(d__1)) + (d__2 = d__[1] * x[k * x_dim1 + 1], abs(d__2)) + (d__3 = dl[1] * x[k * x_dim1 + 2], abs(d__3)); i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { tmp = (d__1 = b[i__ + k * b_dim1], abs(d__1)) + (d__2 = du[i__ - 1] * x[i__ - 1 + k * x_dim1], abs(d__2)) + (d__3 = d__[i__] * x[i__ + k * x_dim1], abs( d__3)) + (d__4 = dl[i__] * x[i__ + 1 + k * x_dim1] , abs(d__4)); axbi = min(axbi,tmp); /* L50: */ } tmp = (d__1 = b[*n + k * b_dim1], abs(d__1)) + (d__2 = du[*n - 1] * x[*n - 1 + k * x_dim1], abs(d__2)) + (d__3 = d__[*n] * x[*n + k * x_dim1], abs(d__3)); axbi = min(axbi,tmp); } } /* Computing MAX */ d__1 = axbi, d__2 = nz * unfl; tmp = berr[k] / (nz * eps + nz * unfl / max(d__1,d__2)); if (k == 1) { reslts[2] = tmp; } else { reslts[2] = max(reslts[2],tmp); } /* L60: */ } return 0; /* End of DGTT05 */ } /* dgtt05_ */