/* cqrt16.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static integer c__1 = 1; /* Subroutine */ int cqrt16_(char *trans, integer *m, integer *n, integer * nrhs, complex *a, integer *lda, complex *x, integer *ldx, complex *b, integer *ldb, real *rwork, real *resid) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; real r__1, r__2; complex q__1; /* Local variables */ integer j, n1, n2; real eps; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); extern logical lsame_(char *, char *); real anorm, bnorm, xnorm; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *), scasum_( integer *, complex *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CQRT16 computes the residual for a solution of a system of linear */ /* equations A*x = b or A'*x = b: */ /* RESID = norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A *x = b */ /* = 'T': A^T*x = b, where A^T is the transpose of A */ /* = 'C': A^H*x = b, where A^H is the conjugate transpose of A */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of columns of B, the matrix of right hand sides. */ /* NRHS >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The original M x N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* X (input) COMPLEX array, dimension (LDX,NRHS) */ /* The computed solution vectors for the system of linear */ /* equations. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. If TRANS = 'N', */ /* LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). */ /* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ /* On entry, the right hand side vectors for the system of */ /* linear equations. */ /* On exit, B is overwritten with the difference B - A*X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. IF TRANS = 'N', */ /* LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). */ /* RWORK (workspace) REAL array, dimension (M) */ /* RESID (output) REAL */ /* The maximum over the number of right hand sides of */ /* norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if M = 0 or N = 0 or NRHS = 0 */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --rwork; /* Function Body */ if (*m <= 0 || *n <= 0 || *nrhs == 0) { *resid = 0.f; return 0; } if (lsame_(trans, "T") || lsame_(trans, "C")) { anorm = clange_("I", m, n, &a[a_offset], lda, &rwork[1]); n1 = *n; n2 = *m; } else { anorm = clange_("1", m, n, &a[a_offset], lda, &rwork[1]); n1 = *m; n2 = *n; } eps = slamch_("Epsilon"); /* Compute B - A*X (or B - A'*X ) and store in B. */ q__1.r = -1.f, q__1.i = -0.f; cgemm_(trans, "No transpose", &n1, nrhs, &n2, &q__1, &a[a_offset], lda, & x[x_offset], ldx, &c_b1, &b[b_offset], ldb) ; /* Compute the maximum over the number of right hand sides of */ /* norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ) . */ *resid = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = scasum_(&n1, &b[j * b_dim1 + 1], &c__1); xnorm = scasum_(&n2, &x[j * x_dim1 + 1], &c__1); if (anorm == 0.f && bnorm == 0.f) { *resid = 0.f; } else if (anorm <= 0.f || xnorm <= 0.f) { *resid = 1.f / eps; } else { /* Computing MAX */ r__1 = *resid, r__2 = bnorm / anorm / xnorm / (max(*m,*n) * eps); *resid = dmax(r__1,r__2); } /* L10: */ } return 0; /* End of CQRT16 */ } /* cqrt16_ */