/* cgtt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int cgtt01_(integer *n, complex *dl, complex *d__, complex * du, complex *dlf, complex *df, complex *duf, complex *du2, integer * ipiv, complex *work, integer *ldwork, real *rwork, real *resid) { /* System generated locals */ integer work_dim1, work_offset, i__1, i__2, i__3, i__4; complex q__1; /* Local variables */ integer i__, j; complex li; integer ip; real eps, anorm; integer lastj; extern /* Subroutine */ int cswap_(integer *, complex *, integer *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); extern doublereal slamch_(char *), clangt_(char *, integer *, complex *, complex *, complex *), clanhs_(char *, integer *, complex *, integer *, real *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGTT01 reconstructs a tridiagonal matrix A from its LU factorization */ /* and computes the residual */ /* norm(L*U - A) / ( norm(A) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========= */ /* N (input) INTEGTER */ /* The order of the matrix A. N >= 0. */ /* DL (input) COMPLEX array, dimension (N-1) */ /* The (n-1) sub-diagonal elements of A. */ /* D (input) COMPLEX array, dimension (N) */ /* The diagonal elements of A. */ /* DU (input) COMPLEX array, dimension (N-1) */ /* The (n-1) super-diagonal elements of A. */ /* DLF (input) COMPLEX array, dimension (N-1) */ /* The (n-1) multipliers that define the matrix L from the */ /* LU factorization of A. */ /* DF (input) COMPLEX array, dimension (N) */ /* The n diagonal elements of the upper triangular matrix U from */ /* the LU factorization of A. */ /* DUF (input) COMPLEX array, dimension (N-1) */ /* The (n-1) elements of the first super-diagonal of U. */ /* DU2 (input) COMPLEX array, dimension (N-2) */ /* The (n-2) elements of the second super-diagonal of U. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices; for 1 <= i <= n, row i of the matrix was */ /* interchanged with row IPIV(i). IPIV(i) will always be either */ /* i or i+1; IPIV(i) = i indicates a row interchange was not */ /* required. */ /* WORK (workspace) COMPLEX array, dimension (LDWORK,N) */ /* LDWORK (input) INTEGER */ /* The leading dimension of the array WORK. LDWORK >= max(1,N). */ /* RWORK (workspace) REAL array, dimension (N) */ /* RESID (output) REAL */ /* The scaled residual: norm(L*U - A) / (norm(A) * EPS) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ --dl; --d__; --du; --dlf; --df; --duf; --du2; --ipiv; work_dim1 = *ldwork; work_offset = 1 + work_dim1; work -= work_offset; --rwork; /* Function Body */ if (*n <= 0) { *resid = 0.f; return 0; } eps = slamch_("Epsilon"); /* Copy the matrix U to WORK. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; work[i__3].r = 0.f, work[i__3].i = 0.f; /* L10: */ } /* L20: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (i__ == 1) { i__2 = i__ + i__ * work_dim1; i__3 = i__; work[i__2].r = df[i__3].r, work[i__2].i = df[i__3].i; if (*n >= 2) { i__2 = i__ + (i__ + 1) * work_dim1; i__3 = i__; work[i__2].r = duf[i__3].r, work[i__2].i = duf[i__3].i; } if (*n >= 3) { i__2 = i__ + (i__ + 2) * work_dim1; i__3 = i__; work[i__2].r = du2[i__3].r, work[i__2].i = du2[i__3].i; } } else if (i__ == *n) { i__2 = i__ + i__ * work_dim1; i__3 = i__; work[i__2].r = df[i__3].r, work[i__2].i = df[i__3].i; } else { i__2 = i__ + i__ * work_dim1; i__3 = i__; work[i__2].r = df[i__3].r, work[i__2].i = df[i__3].i; i__2 = i__ + (i__ + 1) * work_dim1; i__3 = i__; work[i__2].r = duf[i__3].r, work[i__2].i = duf[i__3].i; if (i__ < *n - 1) { i__2 = i__ + (i__ + 2) * work_dim1; i__3 = i__; work[i__2].r = du2[i__3].r, work[i__2].i = du2[i__3].i; } } /* L30: */ } /* Multiply on the left by L. */ lastj = *n; for (i__ = *n - 1; i__ >= 1; --i__) { i__1 = i__; li.r = dlf[i__1].r, li.i = dlf[i__1].i; i__1 = lastj - i__ + 1; caxpy_(&i__1, &li, &work[i__ + i__ * work_dim1], ldwork, &work[i__ + 1 + i__ * work_dim1], ldwork); ip = ipiv[i__]; if (ip == i__) { /* Computing MIN */ i__1 = i__ + 2; lastj = min(i__1,*n); } else { i__1 = lastj - i__ + 1; cswap_(&i__1, &work[i__ + i__ * work_dim1], ldwork, &work[i__ + 1 + i__ * work_dim1], ldwork); } /* L40: */ } /* Subtract the matrix A. */ i__1 = work_dim1 + 1; i__2 = work_dim1 + 1; q__1.r = work[i__2].r - d__[1].r, q__1.i = work[i__2].i - d__[1].i; work[i__1].r = q__1.r, work[i__1].i = q__1.i; if (*n > 1) { i__1 = (work_dim1 << 1) + 1; i__2 = (work_dim1 << 1) + 1; q__1.r = work[i__2].r - du[1].r, q__1.i = work[i__2].i - du[1].i; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = *n + (*n - 1) * work_dim1; i__2 = *n + (*n - 1) * work_dim1; i__3 = *n - 1; q__1.r = work[i__2].r - dl[i__3].r, q__1.i = work[i__2].i - dl[i__3] .i; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = *n + *n * work_dim1; i__2 = *n + *n * work_dim1; i__3 = *n; q__1.r = work[i__2].r - d__[i__3].r, q__1.i = work[i__2].i - d__[i__3] .i; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = *n - 1; for (i__ = 2; i__ <= i__1; ++i__) { i__2 = i__ + (i__ - 1) * work_dim1; i__3 = i__ + (i__ - 1) * work_dim1; i__4 = i__ - 1; q__1.r = work[i__3].r - dl[i__4].r, q__1.i = work[i__3].i - dl[ i__4].i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; i__2 = i__ + i__ * work_dim1; i__3 = i__ + i__ * work_dim1; i__4 = i__; q__1.r = work[i__3].r - d__[i__4].r, q__1.i = work[i__3].i - d__[ i__4].i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; i__2 = i__ + (i__ + 1) * work_dim1; i__3 = i__ + (i__ + 1) * work_dim1; i__4 = i__; q__1.r = work[i__3].r - du[i__4].r, q__1.i = work[i__3].i - du[ i__4].i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L50: */ } } /* Compute the 1-norm of the tridiagonal matrix A. */ anorm = clangt_("1", n, &dl[1], &d__[1], &du[1]); /* Compute the 1-norm of WORK, which is only guaranteed to be */ /* upper Hessenberg. */ *resid = clanhs_("1", n, &work[work_offset], ldwork, &rwork[1]) ; /* Compute norm(L*U - A) / (norm(A) * EPS) */ if (anorm <= 0.f) { if (*resid != 0.f) { *resid = 1.f / eps; } } else { *resid = *resid / anorm / eps; } return 0; /* End of CGTT01 */ } /* cgtt01_ */