/* zdrves.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer selopt, seldim; logical selval[20]; doublereal selwr[20], selwi[20]; } sslct_; #define sslct_1 sslct_ /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__0 = 0; static integer c__4 = 4; static integer c__6 = 6; static doublereal c_b38 = 1.; static integer c__1 = 1; static doublereal c_b48 = 0.; static integer c__2 = 2; /* Subroutine */ int zdrves_(integer *nsizes, integer *nn, integer *ntypes, logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, doublecomplex *a, integer *lda, doublecomplex *h__, doublecomplex *ht, doublecomplex *w, doublecomplex *wt, doublecomplex *vs, integer * ldvs, doublereal *result, doublecomplex *work, integer *nwork, doublereal *rwork, integer *iwork, logical *bwork, integer *info) { /* Initialized data */ static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 }; static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 }; static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 }; static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 }; /* Format strings */ static char fmt_9992[] = "(\002 ZDRVES: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9999[] = "(/1x,a3,\002 -- Complex Schur Form Decompositi" "on Driver\002,/\002 Matrix types (see ZDRVES for details): \002)"; static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002 1=Zero mat" "rix. \002,\002 \002,\002 5=Diagonal: geom" "etr. spaced entries.\002,/\002 2=Identity matrix. " " \002,\002 6=Diagona\002,\002l: clustered entries.\002," "/\002 3=Transposed Jordan block. \002,\002 \002,\002 " " 7=Diagonal: large, evenly spaced.\002,/\002 \002,\0024=Diagona" "l: evenly spaced entries. \002,\002 8=Diagonal: s\002,\002ma" "ll, evenly spaced.\002)"; static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002" " 9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il" "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con" "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste" "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e." "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,a6," "/\002 12=Well-cond., random complex \002,a6,\002 \002,\002 17=" "Ill-cond., large rand. complx \002,a4,/\002 13=Ill-condi\002," "\002tioned, evenly spaced. \002,\002 18=Ill-cond., small ran" "d.\002,\002 complx \002,a4)"; static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries. " " \002,\002 21=Matrix \002,\002with small random entries.\002," "/\002 20=Matrix with large ran\002,\002dom entries. \002,/)"; static char fmt_9995[] = "(\002 Tests performed with test threshold =" "\002,f8.2,/\002 ( A denotes A on input and T denotes A on output)" "\002,//\002 1 = 0 if T in Schur form (no sort), \002,\002 1/ulp" " otherwise\002,/\002 2 = | A - VS T transpose(VS) | / ( n |A| ul" "p ) (no sort)\002,/\002 3 = | I - VS transpose(VS) | / ( n ulp )" " (no sort) \002,/\002 4 = 0 if W are eigenvalues of T (no sort)" ",\002,\002 1/ulp otherwise\002,/\002 5 = 0 if T same no matter " "if VS computed (no sort),\002,\002 1/ulp otherwise\002,/\002 6 " "= 0 if W same no matter if VS computed (no sort)\002,\002, 1/ul" "p otherwise\002)"; static char fmt_9994[] = "(\002 7 = 0 if T in Schur form (sort), \002" ",\002 1/ulp otherwise\002,/\002 8 = | A - VS T transpose(VS) | " "/ ( n |A| ulp ) (sort)\002,/\002 9 = | I - VS transpose(VS) | / " "( n ulp ) (sort) \002,/\002 10 = 0 if W are eigenvalues of T (so" "rt),\002,\002 1/ulp otherwise\002,/\002 11 = 0 if T same no mat" "ter if VS computed (sort),\002,\002 1/ulp otherwise\002,/\002 1" "2 = 0 if W same no matter if VS computed (sort),\002,\002 1/ulp" " otherwise\002,/\002 13 = 0 if sorting succesful, 1/ulp otherwise" "\002,/)"; static char fmt_9993[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed" "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)=" "\002,g10.3)"; /* System generated locals */ integer a_dim1, a_offset, h_dim1, h_offset, ht_dim1, ht_offset, vs_dim1, vs_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublecomplex z__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, n; doublereal res[2]; integer iwk; doublereal ulp, cond; integer jcol; char path[3]; integer sdim, nmax; doublereal unfl, ovfl; integer rsub; char sort[1]; logical badnn; integer nfail, imode, iinfo; doublereal conds, anorm; extern /* Subroutine */ int zgees_(char *, char *, L_fp, integer *, doublecomplex *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, logical *, integer *); integer jsize, nerrs, itype, jtype, ntest, lwork, isort; extern /* Subroutine */ int zhst01_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); doublereal rtulp; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); integer idumma[1], ioldsd[4]; extern /* Subroutine */ int xerbla_(char *, integer *); integer knteig; extern /* Subroutine */ int dlasum_(char *, integer *, integer *, integer *), zlatme_(integer *, char *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *, char *, char *, char *, char *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); integer ntestf; extern logical zslect_(doublecomplex *); extern /* Subroutine */ int zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatmr_(integer *, integer *, char *, integer *, char *, doublecomplex *, integer *, doublereal *, doublecomplex *, char *, char *, doublecomplex *, integer *, doublereal *, doublecomplex * , integer *, doublereal *, char *, integer *, integer *, integer * , doublereal *, doublereal *, char *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); integer nnwork; doublereal rtulpi; integer mtypes, ntestt; doublereal ulpinv; /* Fortran I/O blocks */ static cilist io___31 = { 0, 0, 0, fmt_9992, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9992, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9992, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___47 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___48 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9994, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9993, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZDRVES checks the nonsymmetric eigenvalue (Schur form) problem */ /* driver ZGEES. */ /* When ZDRVES is called, a number of matrix "sizes" ("n's") and a */ /* number of matrix "types" are specified. For each size ("n") */ /* and each type of matrix, one matrix will be generated and used */ /* to test the nonsymmetric eigenroutines. For each matrix, 13 */ /* tests will be performed: */ /* (1) 0 if T is in Schur form, 1/ulp otherwise */ /* (no sorting of eigenvalues) */ /* (2) | A - VS T VS' | / ( n |A| ulp ) */ /* Here VS is the matrix of Schur eigenvectors, and T is in Schur */ /* form (no sorting of eigenvalues). */ /* (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). */ /* (4) 0 if W are eigenvalues of T */ /* 1/ulp otherwise */ /* (no sorting of eigenvalues) */ /* (5) 0 if T(with VS) = T(without VS), */ /* 1/ulp otherwise */ /* (no sorting of eigenvalues) */ /* (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), */ /* 1/ulp otherwise */ /* (no sorting of eigenvalues) */ /* (7) 0 if T is in Schur form, 1/ulp otherwise */ /* (with sorting of eigenvalues) */ /* (8) | A - VS T VS' | / ( n |A| ulp ) */ /* Here VS is the matrix of Schur eigenvectors, and T is in Schur */ /* form (with sorting of eigenvalues). */ /* (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). */ /* (10) 0 if W are eigenvalues of T */ /* 1/ulp otherwise */ /* (with sorting of eigenvalues) */ /* (11) 0 if T(with VS) = T(without VS), */ /* 1/ulp otherwise */ /* (with sorting of eigenvalues) */ /* (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), */ /* 1/ulp otherwise */ /* (with sorting of eigenvalues) */ /* (13) if sorting worked and SDIM is the number of */ /* eigenvalues which were SELECTed */ /* The "sizes" are specified by an array NN(1:NSIZES); the value of */ /* each element NN(j) specifies one size. */ /* The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */ /* if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */ /* Currently, the list of possible types is: */ /* (1) The zero matrix. */ /* (2) The identity matrix. */ /* (3) A (transposed) Jordan block, with 1's on the diagonal. */ /* (4) A diagonal matrix with evenly spaced entries */ /* 1, ..., ULP and random complex angles. */ /* (ULP = (first number larger than 1) - 1 ) */ /* (5) A diagonal matrix with geometrically spaced entries */ /* 1, ..., ULP and random complex angles. */ /* (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */ /* and random complex angles. */ /* (7) Same as (4), but multiplied by a constant near */ /* the overflow threshold */ /* (8) Same as (4), but multiplied by a constant near */ /* the underflow threshold */ /* (9) A matrix of the form U' T U, where U is unitary and */ /* T has evenly spaced entries 1, ..., ULP with random */ /* complex angles on the diagonal and random O(1) entries in */ /* the upper triangle. */ /* (10) A matrix of the form U' T U, where U is unitary and */ /* T has geometrically spaced entries 1, ..., ULP with random */ /* complex angles on the diagonal and random O(1) entries in */ /* the upper triangle. */ /* (11) A matrix of the form U' T U, where U is orthogonal and */ /* T has "clustered" entries 1, ULP,..., ULP with random */ /* complex angles on the diagonal and random O(1) entries in */ /* the upper triangle. */ /* (12) A matrix of the form U' T U, where U is unitary and */ /* T has complex eigenvalues randomly chosen from */ /* ULP < |z| < 1 and random O(1) entries in the upper */ /* triangle. */ /* (13) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */ /* with random complex angles on the diagonal and random O(1) */ /* entries in the upper triangle. */ /* (14) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has geometrically spaced entries */ /* 1, ..., ULP with random complex angles on the diagonal */ /* and random O(1) entries in the upper triangle. */ /* (15) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */ /* with random complex angles on the diagonal and random O(1) */ /* entries in the upper triangle. */ /* (16) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has complex eigenvalues randomly chosen */ /* from ULP < |z| < 1 and random O(1) entries in the upper */ /* triangle. */ /* (17) Same as (16), but multiplied by a constant */ /* near the overflow threshold */ /* (18) Same as (16), but multiplied by a constant */ /* near the underflow threshold */ /* (19) Nonsymmetric matrix with random entries chosen from (-1,1). */ /* If N is at least 4, all entries in first two rows and last */ /* row, and first column and last two columns are zero. */ /* (20) Same as (19), but multiplied by a constant */ /* near the overflow threshold */ /* (21) Same as (19), but multiplied by a constant */ /* near the underflow threshold */ /* Arguments */ /* ========= */ /* NSIZES (input) INTEGER */ /* The number of sizes of matrices to use. If it is zero, */ /* ZDRVES does nothing. It must be at least zero. */ /* NN (input) INTEGER array, dimension (NSIZES) */ /* An array containing the sizes to be used for the matrices. */ /* Zero values will be skipped. The values must be at least */ /* zero. */ /* NTYPES (input) INTEGER */ /* The number of elements in DOTYPE. If it is zero, ZDRVES */ /* does nothing. It must be at least zero. If it is MAXTYP+1 */ /* and NSIZES is 1, then an additional type, MAXTYP+1 is */ /* defined, which is to use whatever matrix is in A. This */ /* is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */ /* DOTYPE(MAXTYP+1) is .TRUE. . */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* If DOTYPE(j) is .TRUE., then for each size in NN a */ /* matrix of that size and of type j will be generated. */ /* If NTYPES is smaller than the maximum number of types */ /* defined (PARAMETER MAXTYP), then types NTYPES+1 through */ /* MAXTYP will not be generated. If NTYPES is larger */ /* than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */ /* will be ignored. */ /* ISEED (input/output) INTEGER array, dimension (4) */ /* On entry ISEED specifies the seed of the random number */ /* generator. The array elements should be between 0 and 4095; */ /* if not they will be reduced mod 4096. Also, ISEED(4) must */ /* be odd. The random number generator uses a linear */ /* congruential sequence limited to small integers, and so */ /* should produce machine independent random numbers. The */ /* values of ISEED are changed on exit, and can be used in the */ /* next call to ZDRVES to continue the same random number */ /* sequence. */ /* THRESH (input) DOUBLE PRECISION */ /* A test will count as "failed" if the "error", computed as */ /* described above, exceeds THRESH. Note that the error */ /* is scaled to be O(1), so THRESH should be a reasonably */ /* small multiple of 1, e.g., 10 or 100. In particular, */ /* it should not depend on the precision (single vs. double) */ /* or the size of the matrix. It must be at least zero. */ /* NOUNIT (input) INTEGER */ /* The FORTRAN unit number for printing out error messages */ /* (e.g., if a routine returns INFO not equal to 0.) */ /* A (workspace) COMPLEX*16 array, dimension (LDA, max(NN)) */ /* Used to hold the matrix whose eigenvalues are to be */ /* computed. On exit, A contains the last matrix actually used. */ /* LDA (input) INTEGER */ /* The leading dimension of A, and H. LDA must be at */ /* least 1 and at least max( NN ). */ /* H (workspace) COMPLEX*16 array, dimension (LDA, max(NN)) */ /* Another copy of the test matrix A, modified by ZGEES. */ /* HT (workspace) COMPLEX*16 array, dimension (LDA, max(NN)) */ /* Yet another copy of the test matrix A, modified by ZGEES. */ /* W (workspace) COMPLEX*16 array, dimension (max(NN)) */ /* The computed eigenvalues of A. */ /* WT (workspace) COMPLEX*16 array, dimension (max(NN)) */ /* Like W, this array contains the eigenvalues of A, */ /* but those computed when ZGEES only computes a partial */ /* eigendecomposition, i.e. not Schur vectors */ /* VS (workspace) COMPLEX*16 array, dimension (LDVS, max(NN)) */ /* VS holds the computed Schur vectors. */ /* LDVS (input) INTEGER */ /* Leading dimension of VS. Must be at least max(1,max(NN)). */ /* RESULT (output) DOUBLE PRECISION array, dimension (13) */ /* The values computed by the 13 tests described above. */ /* The values are currently limited to 1/ulp, to avoid overflow. */ /* WORK (workspace) COMPLEX*16 array, dimension (NWORK) */ /* NWORK (input) INTEGER */ /* The number of entries in WORK. This must be at least */ /* 5*NN(j)+2*NN(j)**2 for all j. */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (max(NN)) */ /* IWORK (workspace) INTEGER array, dimension (max(NN)) */ /* INFO (output) INTEGER */ /* If 0, then everything ran OK. */ /* -1: NSIZES < 0 */ /* -2: Some NN(j) < 0 */ /* -3: NTYPES < 0 */ /* -6: THRESH < 0 */ /* -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). */ /* -15: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ). */ /* -18: NWORK too small. */ /* If ZLATMR, CLATMS, CLATME or ZGEES returns an error code, */ /* the absolute value of it is returned. */ /* ----------------------------------------------------------------------- */ /* Some Local Variables and Parameters: */ /* ---- ----- --------- --- ---------- */ /* ZERO, ONE Real 0 and 1. */ /* MAXTYP The number of types defined. */ /* NMAX Largest value in NN. */ /* NERRS The number of tests which have exceeded THRESH */ /* COND, CONDS, */ /* IMODE Values to be passed to the matrix generators. */ /* ANORM Norm of A; passed to matrix generators. */ /* OVFL, UNFL Overflow and underflow thresholds. */ /* ULP, ULPINV Finest relative precision and its inverse. */ /* RTULP, RTULPI Square roots of the previous 4 values. */ /* The following four arrays decode JTYPE: */ /* KTYPE(j) The general type (1-10) for type "j". */ /* KMODE(j) The MODE value to be passed to the matrix */ /* generator for type "j". */ /* KMAGN(j) The order of magnitude ( O(1), */ /* O(overflow^(1/2) ), O(underflow^(1/2) ) */ /* KCONDS(j) Select whether CONDS is to be 1 or */ /* 1/sqrt(ulp). (0 means irrelevant.) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. Arrays in Common .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --nn; --dotype; --iseed; ht_dim1 = *lda; ht_offset = 1 + ht_dim1; ht -= ht_offset; h_dim1 = *lda; h_offset = 1 + h_dim1; h__ -= h_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; --wt; vs_dim1 = *ldvs; vs_offset = 1 + vs_dim1; vs -= vs_offset; --result; --work; --rwork; --iwork; --bwork; /* Function Body */ /* .. */ /* .. Executable Statements .. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "ES", (ftnlen)2, (ftnlen)2); /* Check for errors */ ntestt = 0; ntestf = 0; *info = 0; sslct_1.selopt = 0; /* Important constants */ badnn = FALSE_; nmax = 0; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*ntypes < 0) { *info = -3; } else if (*thresh < 0.) { *info = -6; } else if (*nounit <= 0) { *info = -7; } else if (*lda < 1 || *lda < nmax) { *info = -9; } else if (*ldvs < 1 || *ldvs < nmax) { *info = -15; } else /* if(complicated condition) */ { /* Computing 2nd power */ i__1 = nmax; if (nmax * 5 + (i__1 * i__1 << 1) > *nwork) { *info = -18; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZDRVES", &i__1); return 0; } /* Quick return if nothing to do */ if (*nsizes == 0 || *ntypes == 0) { return 0; } /* More Important constants */ unfl = dlamch_("Safe minimum"); ovfl = 1. / unfl; dlabad_(&unfl, &ovfl); ulp = dlamch_("Precision"); ulpinv = 1. / ulp; rtulp = sqrt(ulp); rtulpi = 1. / rtulp; /* Loop over sizes, types */ nerrs = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; if (*nsizes != 1) { mtypes = min(21,*ntypes); } else { mtypes = min(22,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L230; } /* Save ISEED in case of an error. */ for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } /* Compute "A" */ /* Control parameters: */ /* KMAGN KCONDS KMODE KTYPE */ /* =1 O(1) 1 clustered 1 zero */ /* =2 large large clustered 2 identity */ /* =3 small exponential Jordan */ /* =4 arithmetic diagonal, (w/ eigenvalues) */ /* =5 random log symmetric, w/ eigenvalues */ /* =6 random general, w/ eigenvalues */ /* =7 random diagonal */ /* =8 random symmetric */ /* =9 random general */ /* =10 random triangular */ if (mtypes > 21) { goto L90; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L30; case 2: goto L40; case 3: goto L50; } L30: anorm = 1.; goto L60; L40: anorm = ovfl * ulp; goto L60; L50: anorm = unfl * ulpinv; goto L60; L60: zlaset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda); iinfo = 0; cond = ulpinv; /* Special Matrices -- Identity & Jordan block */ if (itype == 1) { /* Zero */ iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { i__4 = jcol + jcol * a_dim1; z__1.r = anorm, z__1.i = 0.; a[i__4].r = z__1.r, a[i__4].i = z__1.i; /* L70: */ } } else if (itype == 3) { /* Jordan Block */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { i__4 = jcol + jcol * a_dim1; z__1.r = anorm, z__1.i = 0.; a[i__4].r = z__1.r, a[i__4].i = z__1.i; if (jcol > 1) { i__4 = jcol + (jcol - 1) * a_dim1; a[i__4].r = 1., a[i__4].i = 0.; } /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ zlatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[ n + 1], &iinfo); } else if (itype == 5) { /* Symmetric, eigenvalues specified */ zlatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 6) { /* General, eigenvalues specified */ if (kconds[jtype - 1] == 1) { conds = 1.; } else if (kconds[jtype - 1] == 2) { conds = rtulpi; } else { conds = 0.; } zlatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, " ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], & iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &c__0, & c__0, &c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[ 1], &iinfo); } else if (itype == 8) { /* Symmetric, random eigenvalues */ zlatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &n, &n, & c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 9) { /* General, random eigenvalues */ zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &n, &n, & c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); if (n >= 4) { zlaset_("Full", &c__2, &n, &c_b1, &c_b1, &a[a_offset], lda); i__3 = n - 3; zlaset_("Full", &i__3, &c__1, &c_b1, &c_b1, &a[a_dim1 + 3] , lda); i__3 = n - 3; zlaset_("Full", &i__3, &c__2, &c_b1, &c_b1, &a[(n - 1) * a_dim1 + 3], lda); zlaset_("Full", &c__1, &n, &c_b1, &c_b1, &a[n + a_dim1], lda); } } else if (itype == 10) { /* Triangular, random eigenvalues */ zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &n, &c__0, & c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else { iinfo = 1; } if (iinfo != 0) { io___31.ciunit = *nounit; s_wsfe(&io___31); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L90: /* Test for minimal and generous workspace */ for (iwk = 1; iwk <= 2; ++iwk) { if (iwk == 1) { nnwork = n * 3; } else { /* Computing 2nd power */ i__3 = n; nnwork = n * 5 + (i__3 * i__3 << 1); } nnwork = max(nnwork,1); /* Initialize RESULT */ for (j = 1; j <= 13; ++j) { result[j] = -1.; /* L100: */ } /* Test with and without sorting of eigenvalues */ for (isort = 0; isort <= 1; ++isort) { if (isort == 0) { *(unsigned char *)sort = 'N'; rsub = 0; } else { *(unsigned char *)sort = 'S'; rsub = 6; } /* Compute Schur form and Schur vectors, and test them */ zlacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); zgees_("V", sort, (L_fp)zslect_, &n, &h__[h_offset], lda, &sdim, &w[1], &vs[vs_offset], ldvs, &work[1], & nnwork, &rwork[1], &bwork[1], &iinfo); if (iinfo != 0) { result[rsub + 1] = ulpinv; io___38.ciunit = *nounit; s_wsfe(&io___38); do_fio(&c__1, "ZGEES1", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L190; } /* Do Test (1) or Test (7) */ result[rsub + 1] = 0.; i__3 = n - 1; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = j + 1; i__ <= i__4; ++i__) { i__5 = i__ + j * h_dim1; if (h__[i__5].r != 0. || h__[i__5].i != 0.) { result[rsub + 1] = ulpinv; } /* L110: */ } /* L120: */ } /* Do Tests (2) and (3) or Tests (8) and (9) */ /* Computing MAX */ i__3 = 1, i__4 = (n << 1) * n; lwork = max(i__3,i__4); zhst01_(&n, &c__1, &n, &a[a_offset], lda, &h__[h_offset], lda, &vs[vs_offset], ldvs, &work[1], &lwork, & rwork[1], res); result[rsub + 2] = res[0]; result[rsub + 3] = res[1]; /* Do Test (4) or Test (10) */ result[rsub + 4] = 0.; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + i__ * h_dim1; i__5 = i__; if (h__[i__4].r != w[i__5].r || h__[i__4].i != w[i__5] .i) { result[rsub + 4] = ulpinv; } /* L130: */ } /* Do Test (5) or Test (11) */ zlacpy_("F", &n, &n, &a[a_offset], lda, &ht[ht_offset], lda); zgees_("N", sort, (L_fp)zslect_, &n, &ht[ht_offset], lda, &sdim, &wt[1], &vs[vs_offset], ldvs, &work[1], & nnwork, &rwork[1], &bwork[1], &iinfo); if (iinfo != 0) { result[rsub + 5] = ulpinv; io___42.ciunit = *nounit; s_wsfe(&io___42); do_fio(&c__1, "ZGEES2", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L190; } result[rsub + 5] = 0.; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = i__ + j * h_dim1; i__6 = i__ + j * ht_dim1; if (h__[i__5].r != ht[i__6].r || h__[i__5].i != ht[i__6].i) { result[rsub + 5] = ulpinv; } /* L140: */ } /* L150: */ } /* Do Test (6) or Test (12) */ result[rsub + 6] = 0.; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__; i__5 = i__; if (w[i__4].r != wt[i__5].r || w[i__4].i != wt[i__5] .i) { result[rsub + 6] = ulpinv; } /* L160: */ } /* Do Test (13) */ if (isort == 1) { result[13] = 0.; knteig = 0; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { if (zslect_(&w[i__])) { ++knteig; } if (i__ < n) { if (zslect_(&w[i__ + 1]) && ! zslect_(&w[i__]) ) { result[13] = ulpinv; } } /* L170: */ } if (sdim != knteig) { result[13] = ulpinv; } } /* L180: */ } /* End of Loop -- Check for RESULT(j) > THRESH */ L190: ntest = 0; nfail = 0; for (j = 1; j <= 13; ++j) { if (result[j] >= 0.) { ++ntest; } if (result[j] >= *thresh) { ++nfail; } /* L200: */ } if (nfail > 0) { ++ntestf; } if (ntestf == 1) { io___46.ciunit = *nounit; s_wsfe(&io___46); do_fio(&c__1, path, (ftnlen)3); e_wsfe(); io___47.ciunit = *nounit; s_wsfe(&io___47); e_wsfe(); io___48.ciunit = *nounit; s_wsfe(&io___48); e_wsfe(); io___49.ciunit = *nounit; s_wsfe(&io___49); e_wsfe(); io___50.ciunit = *nounit; s_wsfe(&io___50); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof( doublereal)); e_wsfe(); io___51.ciunit = *nounit; s_wsfe(&io___51); e_wsfe(); ntestf = 2; } for (j = 1; j <= 13; ++j) { if (result[j] >= *thresh) { io___52.ciunit = *nounit; s_wsfe(&io___52); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof( doublereal)); e_wsfe(); } /* L210: */ } nerrs += nfail; ntestt += ntest; /* L220: */ } L230: ; } /* L240: */ } /* Summary */ dlasum_(path, nounit, &nerrs, &ntestt); return 0; /* End of ZDRVES */ } /* zdrves_ */