/* sglmts.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static real c_b13 = -1.f; static real c_b15 = 1.f; /* Subroutine */ int sglmts_(integer *n, integer *m, integer *p, real *a, real *af, integer *lda, real *b, real *bf, integer *ldb, real *d__, real *df, real *x, real *u, real *work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, bf_dim1, bf_offset; real r__1; /* Local variables */ real eps; integer info; real unfl, anorm, bnorm, dnorm; extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); extern doublereal sasum_(integer *, real *, integer *); extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); real xnorm, ynorm; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int sggglm_(integer *, integer *, integer *, real *, integer *, real *, integer *, real *, real *, real *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* Purpose */ /* ======= */ /* SGLMTS tests SGGGLM - a subroutine for solving the generalized */ /* linear model problem. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of rows of the matrices A and B. N >= 0. */ /* M (input) INTEGER */ /* The number of columns of the matrix A. M >= 0. */ /* P (input) INTEGER */ /* The number of columns of the matrix B. P >= 0. */ /* A (input) REAL array, dimension (LDA,M) */ /* The N-by-M matrix A. */ /* AF (workspace) REAL array, dimension (LDA,M) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A, AF. LDA >= max(M,N). */ /* B (input) REAL array, dimension (LDB,P) */ /* The N-by-P matrix A. */ /* BF (workspace) REAL array, dimension (LDB,P) */ /* LDB (input) INTEGER */ /* The leading dimension of the arrays B, BF. LDB >= max(P,N). */ /* D (input) REAL array, dimension( N ) */ /* On input, the left hand side of the GLM. */ /* DF (workspace) REAL array, dimension( N ) */ /* X (output) REAL array, dimension( M ) */ /* solution vector X in the GLM problem. */ /* U (output) REAL array, dimension( P ) */ /* solution vector U in the GLM problem. */ /* WORK (workspace) REAL array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* RWORK (workspace) REAL array, dimension (M) */ /* RESULT (output) REAL */ /* The test ratio: */ /* norm( d - A*x - B*u ) */ /* RESULT = ----------------------------------------- */ /* (norm(A)+norm(B))*(norm(x)+norm(u))*EPS */ /* ==================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; bf_dim1 = *ldb; bf_offset = 1 + bf_dim1; bf -= bf_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --d__; --df; --x; --u; --work; --rwork; /* Function Body */ eps = slamch_("Epsilon"); unfl = slamch_("Safe minimum"); /* Computing MAX */ r__1 = slange_("1", n, m, &a[a_offset], lda, &rwork[1]); anorm = dmax(r__1,unfl); /* Computing MAX */ r__1 = slange_("1", n, p, &b[b_offset], ldb, &rwork[1]); bnorm = dmax(r__1,unfl); /* Copy the matrices A and B to the arrays AF and BF, */ /* and the vector D the array DF. */ slacpy_("Full", n, m, &a[a_offset], lda, &af[af_offset], lda); slacpy_("Full", n, p, &b[b_offset], ldb, &bf[bf_offset], ldb); scopy_(n, &d__[1], &c__1, &df[1], &c__1); /* Solve GLM problem */ sggglm_(n, m, p, &af[af_offset], lda, &bf[bf_offset], ldb, &df[1], &x[1], &u[1], &work[1], lwork, &info); /* Test the residual for the solution of LSE */ /* norm( d - A*x - B*u ) */ /* RESULT = ----------------------------------------- */ /* (norm(A)+norm(B))*(norm(x)+norm(u))*EPS */ scopy_(n, &d__[1], &c__1, &df[1], &c__1); sgemv_("No transpose", n, m, &c_b13, &a[a_offset], lda, &x[1], &c__1, & c_b15, &df[1], &c__1); sgemv_("No transpose", n, p, &c_b13, &b[b_offset], ldb, &u[1], &c__1, & c_b15, &df[1], &c__1); dnorm = sasum_(n, &df[1], &c__1); xnorm = sasum_(m, &x[1], &c__1) + sasum_(p, &u[1], &c__1); ynorm = anorm + bnorm; if (xnorm <= 0.f) { *result = 0.f; } else { *result = dnorm / ynorm / xnorm / eps; } return 0; /* End of SGLMTS */ } /* sglmts_ */