/* chet21.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__1 = 1; /* Subroutine */ int chet21_(integer *itype, char *uplo, integer *n, integer * kband, complex *a, integer *lda, real *d__, real *e, complex *u, integer *ldu, complex *v, integer *ldv, complex *tau, complex *work, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, u_dim1, u_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1, r__2; complex q__1, q__2, q__3; /* Local variables */ integer j, jr; real ulp; extern /* Subroutine */ int cher_(char *, integer *, real *, complex *, integer *, complex *, integer *); integer jcol; real unfl; integer jrow; extern /* Subroutine */ int cher2_(char *, integer *, complex *, complex * , integer *, complex *, integer *, complex *, integer *), cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); extern logical lsame_(char *, char *); integer iinfo; real anorm; char cuplo[1]; complex vsave; logical lower; real wnorm; extern /* Subroutine */ int cunm2l_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *), cunm2r_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), clanhe_(char *, char *, integer *, complex *, integer *, real *), slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), clarfy_(char *, integer *, complex *, integer *, complex *, complex *, integer *, complex *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CHET21 generally checks a decomposition of the form */ /* A = U S U* */ /* where * means conjugate transpose, A is hermitian, U is unitary, and */ /* S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if */ /* KBAND=1). */ /* If ITYPE=1, then U is represented as a dense matrix; otherwise U is */ /* expressed as a product of Householder transformations, whose vectors */ /* are stored in the array "V" and whose scaling constants are in "TAU". */ /* We shall use the letter "V" to refer to the product of Householder */ /* transformations (which should be equal to U). */ /* Specifically, if ITYPE=1, then: */ /* RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* */ /* RESULT(2) = | I - UU* | / ( n ulp ) */ /* If ITYPE=2, then: */ /* RESULT(1) = | A - V S V* | / ( |A| n ulp ) */ /* If ITYPE=3, then: */ /* RESULT(1) = | I - UV* | / ( n ulp ) */ /* For ITYPE > 1, the transformation U is expressed as a product */ /* V = H(1)...H(n-2), where H(j) = I - tau(j) v(j) v(j)* and each */ /* vector v(j) has its first j elements 0 and the remaining n-j elements */ /* stored in V(j+1:n,j). */ /* Arguments */ /* ========= */ /* ITYPE (input) INTEGER */ /* Specifies the type of tests to be performed. */ /* 1: U expressed as a dense unitary matrix: */ /* RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* */ /* RESULT(2) = | I - UU* | / ( n ulp ) */ /* 2: U expressed as a product V of Housholder transformations: */ /* RESULT(1) = | A - V S V* | / ( |A| n ulp ) */ /* 3: U expressed both as a dense unitary matrix and */ /* as a product of Housholder transformations: */ /* RESULT(1) = | I - UV* | / ( n ulp ) */ /* UPLO (input) CHARACTER */ /* If UPLO='U', the upper triangle of A and V will be used and */ /* the (strictly) lower triangle will not be referenced. */ /* If UPLO='L', the lower triangle of A and V will be used and */ /* the (strictly) upper triangle will not be referenced. */ /* N (input) INTEGER */ /* The size of the matrix. If it is zero, CHET21 does nothing. */ /* It must be at least zero. */ /* KBAND (input) INTEGER */ /* The bandwidth of the matrix. It may only be zero or one. */ /* If zero, then S is diagonal, and E is not referenced. If */ /* one, then S is symmetric tri-diagonal. */ /* A (input) COMPLEX array, dimension (LDA, N) */ /* The original (unfactored) matrix. It is assumed to be */ /* hermitian, and only the upper (UPLO='U') or only the lower */ /* (UPLO='L') will be referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of A. It must be at least 1 */ /* and at least N. */ /* D (input) REAL array, dimension (N) */ /* The diagonal of the (symmetric tri-) diagonal matrix. */ /* E (input) REAL array, dimension (N-1) */ /* The off-diagonal of the (symmetric tri-) diagonal matrix. */ /* E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and */ /* (3,2) element, etc. */ /* Not referenced if KBAND=0. */ /* U (input) COMPLEX array, dimension (LDU, N) */ /* If ITYPE=1 or 3, this contains the unitary matrix in */ /* the decomposition, expressed as a dense matrix. If ITYPE=2, */ /* then it is not referenced. */ /* LDU (input) INTEGER */ /* The leading dimension of U. LDU must be at least N and */ /* at least 1. */ /* V (input) COMPLEX array, dimension (LDV, N) */ /* If ITYPE=2 or 3, the columns of this array contain the */ /* Householder vectors used to describe the unitary matrix */ /* in the decomposition. If UPLO='L', then the vectors are in */ /* the lower triangle, if UPLO='U', then in the upper */ /* triangle. */ /* *NOTE* If ITYPE=2 or 3, V is modified and restored. The */ /* subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') */ /* is set to one, and later reset to its original value, during */ /* the course of the calculation. */ /* If ITYPE=1, then it is neither referenced nor modified. */ /* LDV (input) INTEGER */ /* The leading dimension of V. LDV must be at least N and */ /* at least 1. */ /* TAU (input) COMPLEX array, dimension (N) */ /* If ITYPE >= 2, then TAU(j) is the scalar factor of */ /* v(j) v(j)* in the Householder transformation H(j) of */ /* the product U = H(1)...H(n-2) */ /* If ITYPE < 2, then TAU is not referenced. */ /* WORK (workspace) COMPLEX array, dimension (2*N**2) */ /* RWORK (workspace) REAL array, dimension (N) */ /* RESULT (output) REAL array, dimension (2) */ /* The values computed by the two tests described above. The */ /* values are currently limited to 1/ulp, to avoid overflow. */ /* RESULT(1) is always modified. RESULT(2) is modified only */ /* if ITYPE=1. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; --tau; --work; --rwork; --result; /* Function Body */ result[1] = 0.f; if (*itype == 1) { result[2] = 0.f; } if (*n <= 0) { return 0; } if (lsame_(uplo, "U")) { lower = FALSE_; *(unsigned char *)cuplo = 'U'; } else { lower = TRUE_; *(unsigned char *)cuplo = 'L'; } unfl = slamch_("Safe minimum"); ulp = slamch_("Epsilon") * slamch_("Base"); /* Some Error Checks */ if (*itype < 1 || *itype > 3) { result[1] = 10.f / ulp; return 0; } /* Do Test 1 */ /* Norm of A: */ if (*itype == 3) { anorm = 1.f; } else { /* Computing MAX */ r__1 = clanhe_("1", cuplo, n, &a[a_offset], lda, &rwork[1]); anorm = dmax(r__1,unfl); } /* Compute error matrix: */ if (*itype == 1) { /* ITYPE=1: error = A - U S U* */ claset_("Full", n, n, &c_b1, &c_b1, &work[1], n); clacpy_(cuplo, n, n, &a[a_offset], lda, &work[1], n); i__1 = *n; for (j = 1; j <= i__1; ++j) { r__1 = -d__[j]; cher_(cuplo, n, &r__1, &u[j * u_dim1 + 1], &c__1, &work[1], n); /* L10: */ } if (*n > 1 && *kband == 1) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j; q__2.r = e[i__2], q__2.i = 0.f; q__1.r = -q__2.r, q__1.i = -q__2.i; cher2_(cuplo, n, &q__1, &u[j * u_dim1 + 1], &c__1, &u[(j - 1) * u_dim1 + 1], &c__1, &work[1], n); /* L20: */ } } wnorm = clanhe_("1", cuplo, n, &work[1], n, &rwork[1]); } else if (*itype == 2) { /* ITYPE=2: error = V S V* - A */ claset_("Full", n, n, &c_b1, &c_b1, &work[1], n); if (lower) { /* Computing 2nd power */ i__2 = *n; i__1 = i__2 * i__2; i__3 = *n; work[i__1].r = d__[i__3], work[i__1].i = 0.f; for (j = *n - 1; j >= 1; --j) { if (*kband == 1) { i__1 = (*n + 1) * (j - 1) + 2; i__2 = j; q__2.r = 1.f - tau[i__2].r, q__2.i = 0.f - tau[i__2].i; i__3 = j; q__1.r = e[i__3] * q__2.r, q__1.i = e[i__3] * q__2.i; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = *n; for (jr = j + 2; jr <= i__1; ++jr) { i__2 = (j - 1) * *n + jr; i__3 = j; q__3.r = -tau[i__3].r, q__3.i = -tau[i__3].i; i__4 = j; q__2.r = e[i__4] * q__3.r, q__2.i = e[i__4] * q__3.i; i__5 = jr + j * v_dim1; q__1.r = q__2.r * v[i__5].r - q__2.i * v[i__5].i, q__1.i = q__2.r * v[i__5].i + q__2.i * v[i__5] .r; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L30: */ } } i__1 = j + 1 + j * v_dim1; vsave.r = v[i__1].r, vsave.i = v[i__1].i; i__1 = j + 1 + j * v_dim1; v[i__1].r = 1.f, v[i__1].i = 0.f; i__1 = *n - j; /* Computing 2nd power */ i__2 = *n; clarfy_("L", &i__1, &v[j + 1 + j * v_dim1], &c__1, &tau[j], & work[(*n + 1) * j + 1], n, &work[i__2 * i__2 + 1]); i__1 = j + 1 + j * v_dim1; v[i__1].r = vsave.r, v[i__1].i = vsave.i; i__1 = (*n + 1) * (j - 1) + 1; i__2 = j; work[i__1].r = d__[i__2], work[i__1].i = 0.f; /* L40: */ } } else { work[1].r = d__[1], work[1].i = 0.f; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { if (*kband == 1) { i__2 = (*n + 1) * j; i__3 = j; q__2.r = 1.f - tau[i__3].r, q__2.i = 0.f - tau[i__3].i; i__4 = j; q__1.r = e[i__4] * q__2.r, q__1.i = e[i__4] * q__2.i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; i__2 = j - 1; for (jr = 1; jr <= i__2; ++jr) { i__3 = j * *n + jr; i__4 = j; q__3.r = -tau[i__4].r, q__3.i = -tau[i__4].i; i__5 = j; q__2.r = e[i__5] * q__3.r, q__2.i = e[i__5] * q__3.i; i__6 = jr + (j + 1) * v_dim1; q__1.r = q__2.r * v[i__6].r - q__2.i * v[i__6].i, q__1.i = q__2.r * v[i__6].i + q__2.i * v[i__6] .r; work[i__3].r = q__1.r, work[i__3].i = q__1.i; /* L50: */ } } i__2 = j + (j + 1) * v_dim1; vsave.r = v[i__2].r, vsave.i = v[i__2].i; i__2 = j + (j + 1) * v_dim1; v[i__2].r = 1.f, v[i__2].i = 0.f; /* Computing 2nd power */ i__2 = *n; clarfy_("U", &j, &v[(j + 1) * v_dim1 + 1], &c__1, &tau[j], & work[1], n, &work[i__2 * i__2 + 1]); i__2 = j + (j + 1) * v_dim1; v[i__2].r = vsave.r, v[i__2].i = vsave.i; i__2 = (*n + 1) * j + 1; i__3 = j + 1; work[i__2].r = d__[i__3], work[i__2].i = 0.f; /* L60: */ } } i__1 = *n; for (jcol = 1; jcol <= i__1; ++jcol) { if (lower) { i__2 = *n; for (jrow = jcol; jrow <= i__2; ++jrow) { i__3 = jrow + *n * (jcol - 1); i__4 = jrow + *n * (jcol - 1); i__5 = jrow + jcol * a_dim1; q__1.r = work[i__4].r - a[i__5].r, q__1.i = work[i__4].i - a[i__5].i; work[i__3].r = q__1.r, work[i__3].i = q__1.i; /* L70: */ } } else { i__2 = jcol; for (jrow = 1; jrow <= i__2; ++jrow) { i__3 = jrow + *n * (jcol - 1); i__4 = jrow + *n * (jcol - 1); i__5 = jrow + jcol * a_dim1; q__1.r = work[i__4].r - a[i__5].r, q__1.i = work[i__4].i - a[i__5].i; work[i__3].r = q__1.r, work[i__3].i = q__1.i; /* L80: */ } } /* L90: */ } wnorm = clanhe_("1", cuplo, n, &work[1], n, &rwork[1]); } else if (*itype == 3) { /* ITYPE=3: error = U V* - I */ if (*n < 2) { return 0; } clacpy_(" ", n, n, &u[u_offset], ldu, &work[1], n); if (lower) { i__1 = *n - 1; i__2 = *n - 1; /* Computing 2nd power */ i__3 = *n; cunm2r_("R", "C", n, &i__1, &i__2, &v[v_dim1 + 2], ldv, &tau[1], & work[*n + 1], n, &work[i__3 * i__3 + 1], &iinfo); } else { i__1 = *n - 1; i__2 = *n - 1; /* Computing 2nd power */ i__3 = *n; cunm2l_("R", "C", n, &i__1, &i__2, &v[(v_dim1 << 1) + 1], ldv, & tau[1], &work[1], n, &work[i__3 * i__3 + 1], &iinfo); } if (iinfo != 0) { result[1] = 10.f / ulp; return 0; } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = (*n + 1) * (j - 1) + 1; i__3 = (*n + 1) * (j - 1) + 1; q__1.r = work[i__3].r - 1.f, q__1.i = work[i__3].i - 0.f; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L100: */ } wnorm = clange_("1", n, n, &work[1], n, &rwork[1]); } if (anorm > wnorm) { result[1] = wnorm / anorm / (*n * ulp); } else { if (anorm < 1.f) { /* Computing MIN */ r__1 = wnorm, r__2 = *n * anorm; result[1] = dmin(r__1,r__2) / anorm / (*n * ulp); } else { /* Computing MIN */ r__1 = wnorm / anorm, r__2 = (real) (*n); result[1] = dmin(r__1,r__2) / (*n * ulp); } } /* Do Test 2 */ /* Compute UU* - I */ if (*itype == 1) { cgemm_("N", "C", n, n, n, &c_b2, &u[u_offset], ldu, &u[u_offset], ldu, &c_b1, &work[1], n); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = (*n + 1) * (j - 1) + 1; i__3 = (*n + 1) * (j - 1) + 1; q__1.r = work[i__3].r - 1.f, q__1.i = work[i__3].i - 0.f; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L110: */ } /* Computing MIN */ r__1 = clange_("1", n, n, &work[1], n, &rwork[1]), r__2 = ( real) (*n); result[2] = dmin(r__1,r__2) / (*n * ulp); } return 0; /* End of CHET21 */ } /* chet21_ */