/* zungl2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zungl2_(integer *m, integer *n, integer *k, doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex * work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublecomplex z__1, z__2; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, l; extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *), zlarf_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), xerbla_(char *, integer *), zlacgv_(integer *, doublecomplex *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZUNGL2 generates an m-by-n complex matrix Q with orthonormal rows, */ /* which is defined as the first m rows of a product of k elementary */ /* reflectors of order n */ /* Q = H(k)' . . . H(2)' H(1)' */ /* as returned by ZGELQF. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix Q. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix Q. N >= M. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines the */ /* matrix Q. M >= K >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the i-th row must contain the vector which defines */ /* the elementary reflector H(i), for i = 1,2,...,k, as returned */ /* by ZGELQF in the first k rows of its array argument A. */ /* On exit, the m by n matrix Q. */ /* LDA (input) INTEGER */ /* The first dimension of the array A. LDA >= max(1,M). */ /* TAU (input) COMPLEX*16 array, dimension (K) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by ZGELQF. */ /* WORK (workspace) COMPLEX*16 array, dimension (M) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument has an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*k < 0 || *k > *m) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("ZUNGL2", &i__1); return 0; } /* Quick return if possible */ if (*m <= 0) { return 0; } if (*k < *m) { /* Initialise rows k+1:m to rows of the unit matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (l = *k + 1; l <= i__2; ++l) { i__3 = l + j * a_dim1; a[i__3].r = 0., a[i__3].i = 0.; /* L10: */ } if (j > *k && j <= *m) { i__2 = j + j * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; } /* L20: */ } } for (i__ = *k; i__ >= 1; --i__) { /* Apply H(i)' to A(i:m,i:n) from the right */ if (i__ < *n) { i__1 = *n - i__; zlacgv_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda); if (i__ < *m) { i__1 = i__ + i__ * a_dim1; a[i__1].r = 1., a[i__1].i = 0.; i__1 = *m - i__; i__2 = *n - i__ + 1; d_cnjg(&z__1, &tau[i__]); zlarf_("Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, & z__1, &a[i__ + 1 + i__ * a_dim1], lda, &work[1]); } i__1 = *n - i__; i__2 = i__; z__1.r = -tau[i__2].r, z__1.i = -tau[i__2].i; zscal_(&i__1, &z__1, &a[i__ + (i__ + 1) * a_dim1], lda); i__1 = *n - i__; zlacgv_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda); } i__1 = i__ + i__ * a_dim1; d_cnjg(&z__2, &tau[i__]); z__1.r = 1. - z__2.r, z__1.i = 0. - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; /* Set A(i,1:i-1) to zero */ i__1 = i__ - 1; for (l = 1; l <= i__1; ++l) { i__2 = i__ + l * a_dim1; a[i__2].r = 0., a[i__2].i = 0.; /* L30: */ } /* L40: */ } return 0; /* End of ZUNGL2 */ } /* zungl2_ */