/* ztzrzf.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; /* Subroutine */ int ztzrzf_(integer *m, integer *n, doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; /* Local variables */ integer i__, m1, ib, nb, ki, kk, mu, nx, iws, nbmin; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer ldwork; extern /* Subroutine */ int zlarzb_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int zlarzt_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zlatrz_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A */ /* to upper triangular form by means of unitary transformations. */ /* The upper trapezoidal matrix A is factored as */ /* A = ( R 0 ) * Z, */ /* where Z is an N-by-N unitary matrix and R is an M-by-M upper */ /* triangular matrix. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= M. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the leading M-by-N upper trapezoidal part of the */ /* array A must contain the matrix to be factorized. */ /* On exit, the leading M-by-M upper triangular part of A */ /* contains the upper triangular matrix R, and elements M+1 to */ /* N of the first M rows of A, with the array TAU, represent the */ /* unitary matrix Z as a product of M elementary reflectors. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) COMPLEX*16 array, dimension (M) */ /* The scalar factors of the elementary reflectors. */ /* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,M). */ /* For optimum performance LWORK >= M*NB, where NB is */ /* the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ /* The factorization is obtained by Householder's method. The kth */ /* transformation matrix, Z( k ), which is used to introduce zeros into */ /* the ( m - k + 1 )th row of A, is given in the form */ /* Z( k ) = ( I 0 ), */ /* ( 0 T( k ) ) */ /* where */ /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ /* ( 0 ) */ /* ( z( k ) ) */ /* tau is a scalar and z( k ) is an ( n - m ) element vector. */ /* tau and z( k ) are chosen to annihilate the elements of the kth row */ /* of X. */ /* The scalar tau is returned in the kth element of TAU and the vector */ /* u( k ) in the kth row of A, such that the elements of z( k ) are */ /* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */ /* the upper triangular part of A. */ /* Z is given by */ /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info == 0) { if (*m == 0 || *m == *n) { lwkopt = 1; } else { /* Determine the block size. */ nb = ilaenv_(&c__1, "ZGERQF", " ", m, n, &c_n1, &c_n1); lwkopt = *m * nb; } work[1].r = (doublereal) lwkopt, work[1].i = 0.; if (*lwork < max(1,*m) && ! lquery) { *info = -7; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZTZRZF", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0) { return 0; } else if (*m == *n) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; tau[i__2].r = 0., tau[i__2].i = 0.; /* L10: */ } return 0; } nbmin = 2; nx = 1; iws = *m; if (nb > 1 && nb < *m) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, "ZGERQF", " ", m, n, &c_n1, &c_n1); nx = max(i__1,i__2); if (nx < *m) { /* Determine if workspace is large enough for blocked code. */ ldwork = *m; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and */ /* determine the minimum value of NB. */ nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "ZGERQF", " ", m, n, &c_n1, & c_n1); nbmin = max(i__1,i__2); } } } if (nb >= nbmin && nb < *m && nx < *m) { /* Use blocked code initially. */ /* The last kk rows are handled by the block method. */ /* Computing MIN */ i__1 = *m + 1; m1 = min(i__1,*n); ki = (*m - nx - 1) / nb * nb; /* Computing MIN */ i__1 = *m, i__2 = ki + nb; kk = min(i__1,i__2); i__1 = *m - kk + 1; i__2 = -nb; for (i__ = *m - kk + ki + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = *m - i__ + 1; ib = min(i__3,nb); /* Compute the TZ factorization of the current block */ /* A(i:i+ib-1,i:n) */ i__3 = *n - i__ + 1; i__4 = *n - *m; zlatrz_(&ib, &i__3, &i__4, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]); if (i__ > 1) { /* Form the triangular factor of the block reflector */ /* H = H(i+ib-1) . . . H(i+1) H(i) */ i__3 = *n - *m; zlarzt_("Backward", "Rowwise", &i__3, &ib, &a[i__ + m1 * a_dim1], lda, &tau[i__], &work[1], &ldwork); /* Apply H to A(1:i-1,i:n) from the right */ i__3 = i__ - 1; i__4 = *n - i__ + 1; i__5 = *n - *m; zlarzb_("Right", "No transpose", "Backward", "Rowwise", &i__3, &i__4, &ib, &i__5, &a[i__ + m1 * a_dim1], lda, &work[ 1], &ldwork, &a[i__ * a_dim1 + 1], lda, &work[ib + 1], &ldwork) ; } /* L20: */ } mu = i__ + nb - 1; } else { mu = *m; } /* Use unblocked code to factor the last or only block */ if (mu > 0) { i__2 = *n - *m; zlatrz_(&mu, n, &i__2, &a[a_offset], lda, &tau[1], &work[1]); } work[1].r = (doublereal) lwkopt, work[1].i = 0.; return 0; /* End of ZTZRZF */ } /* ztzrzf_ */