/* ztrevc.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; /* Subroutine */ int ztrevc_(char *side, char *howmny, logical *select, integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *ldvr, integer *mm, integer *m, doublecomplex *work, doublereal *rwork, integer *info) { /* System generated locals */ integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2, d__3; doublecomplex z__1, z__2; /* Builtin functions */ double d_imag(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, k, ii, ki, is; doublereal ulp; logical allv; doublereal unfl, ovfl, smin; logical over; doublereal scale; extern logical lsame_(char *, char *); doublereal remax; logical leftv, bothv; extern /* Subroutine */ int zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); logical somev; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_( integer *, doublereal *, doublecomplex *, integer *); extern integer izamax_(integer *, doublecomplex *, integer *); logical rightv; extern doublereal dzasum_(integer *, doublecomplex *, integer *); doublereal smlnum; extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, doublereal *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTREVC computes some or all of the right and/or left eigenvectors of */ /* a complex upper triangular matrix T. */ /* Matrices of this type are produced by the Schur factorization of */ /* a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. */ /* The right eigenvector x and the left eigenvector y of T corresponding */ /* to an eigenvalue w are defined by: */ /* T*x = w*x, (y**H)*T = w*(y**H) */ /* where y**H denotes the conjugate transpose of the vector y. */ /* The eigenvalues are not input to this routine, but are read directly */ /* from the diagonal of T. */ /* This routine returns the matrices X and/or Y of right and left */ /* eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */ /* input matrix. If Q is the unitary factor that reduces a matrix A to */ /* Schur form T, then Q*X and Q*Y are the matrices of right and left */ /* eigenvectors of A. */ /* Arguments */ /* ========= */ /* SIDE (input) CHARACTER*1 */ /* = 'R': compute right eigenvectors only; */ /* = 'L': compute left eigenvectors only; */ /* = 'B': compute both right and left eigenvectors. */ /* HOWMNY (input) CHARACTER*1 */ /* = 'A': compute all right and/or left eigenvectors; */ /* = 'B': compute all right and/or left eigenvectors, */ /* backtransformed using the matrices supplied in */ /* VR and/or VL; */ /* = 'S': compute selected right and/or left eigenvectors, */ /* as indicated by the logical array SELECT. */ /* SELECT (input) LOGICAL array, dimension (N) */ /* If HOWMNY = 'S', SELECT specifies the eigenvectors to be */ /* computed. */ /* The eigenvector corresponding to the j-th eigenvalue is */ /* computed if SELECT(j) = .TRUE.. */ /* Not referenced if HOWMNY = 'A' or 'B'. */ /* N (input) INTEGER */ /* The order of the matrix T. N >= 0. */ /* T (input/output) COMPLEX*16 array, dimension (LDT,N) */ /* The upper triangular matrix T. T is modified, but restored */ /* on exit. */ /* LDT (input) INTEGER */ /* The leading dimension of the array T. LDT >= max(1,N). */ /* VL (input/output) COMPLEX*16 array, dimension (LDVL,MM) */ /* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */ /* contain an N-by-N matrix Q (usually the unitary matrix Q of */ /* Schur vectors returned by ZHSEQR). */ /* On exit, if SIDE = 'L' or 'B', VL contains: */ /* if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */ /* if HOWMNY = 'B', the matrix Q*Y; */ /* if HOWMNY = 'S', the left eigenvectors of T specified by */ /* SELECT, stored consecutively in the columns */ /* of VL, in the same order as their */ /* eigenvalues. */ /* Not referenced if SIDE = 'R'. */ /* LDVL (input) INTEGER */ /* The leading dimension of the array VL. LDVL >= 1, and if */ /* SIDE = 'L' or 'B', LDVL >= N. */ /* VR (input/output) COMPLEX*16 array, dimension (LDVR,MM) */ /* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */ /* contain an N-by-N matrix Q (usually the unitary matrix Q of */ /* Schur vectors returned by ZHSEQR). */ /* On exit, if SIDE = 'R' or 'B', VR contains: */ /* if HOWMNY = 'A', the matrix X of right eigenvectors of T; */ /* if HOWMNY = 'B', the matrix Q*X; */ /* if HOWMNY = 'S', the right eigenvectors of T specified by */ /* SELECT, stored consecutively in the columns */ /* of VR, in the same order as their */ /* eigenvalues. */ /* Not referenced if SIDE = 'L'. */ /* LDVR (input) INTEGER */ /* The leading dimension of the array VR. LDVR >= 1, and if */ /* SIDE = 'R' or 'B'; LDVR >= N. */ /* MM (input) INTEGER */ /* The number of columns in the arrays VL and/or VR. MM >= M. */ /* M (output) INTEGER */ /* The number of columns in the arrays VL and/or VR actually */ /* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M */ /* is set to N. Each selected eigenvector occupies one */ /* column. */ /* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The algorithm used in this program is basically backward (forward) */ /* substitution, with scaling to make the the code robust against */ /* possible overflow. */ /* Each eigenvector is normalized so that the element of largest */ /* magnitude has magnitude 1; here the magnitude of a complex number */ /* (x,y) is taken to be |x| + |y|. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode and test the input parameters */ /* Parameter adjustments */ --select; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --work; --rwork; /* Function Body */ bothv = lsame_(side, "B"); rightv = lsame_(side, "R") || bothv; leftv = lsame_(side, "L") || bothv; allv = lsame_(howmny, "A"); over = lsame_(howmny, "B"); somev = lsame_(howmny, "S"); /* Set M to the number of columns required to store the selected */ /* eigenvectors. */ if (somev) { *m = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (select[j]) { ++(*m); } /* L10: */ } } else { *m = *n; } *info = 0; if (! rightv && ! leftv) { *info = -1; } else if (! allv && ! over && ! somev) { *info = -2; } else if (*n < 0) { *info = -4; } else if (*ldt < max(1,*n)) { *info = -6; } else if (*ldvl < 1 || leftv && *ldvl < *n) { *info = -8; } else if (*ldvr < 1 || rightv && *ldvr < *n) { *info = -10; } else if (*mm < *m) { *info = -11; } if (*info != 0) { i__1 = -(*info); xerbla_("ZTREVC", &i__1); return 0; } /* Quick return if possible. */ if (*n == 0) { return 0; } /* Set the constants to control overflow. */ unfl = dlamch_("Safe minimum"); ovfl = 1. / unfl; dlabad_(&unfl, &ovfl); ulp = dlamch_("Precision"); smlnum = unfl * (*n / ulp); /* Store the diagonal elements of T in working array WORK. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + *n; i__3 = i__ + i__ * t_dim1; work[i__2].r = t[i__3].r, work[i__2].i = t[i__3].i; /* L20: */ } /* Compute 1-norm of each column of strictly upper triangular */ /* part of T to control overflow in triangular solver. */ rwork[1] = 0.; i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = j - 1; rwork[j] = dzasum_(&i__2, &t[j * t_dim1 + 1], &c__1); /* L30: */ } if (rightv) { /* Compute right eigenvectors. */ is = *m; for (ki = *n; ki >= 1; --ki) { if (somev) { if (! select[ki]) { goto L80; } } /* Computing MAX */ i__1 = ki + ki * t_dim1; d__3 = ulp * ((d__1 = t[i__1].r, abs(d__1)) + (d__2 = d_imag(&t[ ki + ki * t_dim1]), abs(d__2))); smin = max(d__3,smlnum); work[1].r = 1., work[1].i = 0.; /* Form right-hand side. */ i__1 = ki - 1; for (k = 1; k <= i__1; ++k) { i__2 = k; i__3 = k + ki * t_dim1; z__1.r = -t[i__3].r, z__1.i = -t[i__3].i; work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L40: */ } /* Solve the triangular system: */ /* (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK. */ i__1 = ki - 1; for (k = 1; k <= i__1; ++k) { i__2 = k + k * t_dim1; i__3 = k + k * t_dim1; i__4 = ki + ki * t_dim1; z__1.r = t[i__3].r - t[i__4].r, z__1.i = t[i__3].i - t[i__4] .i; t[i__2].r = z__1.r, t[i__2].i = z__1.i; i__2 = k + k * t_dim1; if ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[k + k * t_dim1]), abs(d__2)) < smin) { i__3 = k + k * t_dim1; t[i__3].r = smin, t[i__3].i = 0.; } /* L50: */ } if (ki > 1) { i__1 = ki - 1; zlatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[ t_offset], ldt, &work[1], &scale, &rwork[1], info); i__1 = ki; work[i__1].r = scale, work[i__1].i = 0.; } /* Copy the vector x or Q*x to VR and normalize. */ if (! over) { zcopy_(&ki, &work[1], &c__1, &vr[is * vr_dim1 + 1], &c__1); ii = izamax_(&ki, &vr[is * vr_dim1 + 1], &c__1); i__1 = ii + is * vr_dim1; remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag( &vr[ii + is * vr_dim1]), abs(d__2))); zdscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1); i__1 = *n; for (k = ki + 1; k <= i__1; ++k) { i__2 = k + is * vr_dim1; vr[i__2].r = 0., vr[i__2].i = 0.; /* L60: */ } } else { if (ki > 1) { i__1 = ki - 1; z__1.r = scale, z__1.i = 0.; zgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[ 1], &c__1, &z__1, &vr[ki * vr_dim1 + 1], &c__1); } ii = izamax_(n, &vr[ki * vr_dim1 + 1], &c__1); i__1 = ii + ki * vr_dim1; remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag( &vr[ii + ki * vr_dim1]), abs(d__2))); zdscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1); } /* Set back the original diagonal elements of T. */ i__1 = ki - 1; for (k = 1; k <= i__1; ++k) { i__2 = k + k * t_dim1; i__3 = k + *n; t[i__2].r = work[i__3].r, t[i__2].i = work[i__3].i; /* L70: */ } --is; L80: ; } } if (leftv) { /* Compute left eigenvectors. */ is = 1; i__1 = *n; for (ki = 1; ki <= i__1; ++ki) { if (somev) { if (! select[ki]) { goto L130; } } /* Computing MAX */ i__2 = ki + ki * t_dim1; d__3 = ulp * ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[ ki + ki * t_dim1]), abs(d__2))); smin = max(d__3,smlnum); i__2 = *n; work[i__2].r = 1., work[i__2].i = 0.; /* Form right-hand side. */ i__2 = *n; for (k = ki + 1; k <= i__2; ++k) { i__3 = k; d_cnjg(&z__2, &t[ki + k * t_dim1]); z__1.r = -z__2.r, z__1.i = -z__2.i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; /* L90: */ } /* Solve the triangular system: */ /* (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK. */ i__2 = *n; for (k = ki + 1; k <= i__2; ++k) { i__3 = k + k * t_dim1; i__4 = k + k * t_dim1; i__5 = ki + ki * t_dim1; z__1.r = t[i__4].r - t[i__5].r, z__1.i = t[i__4].i - t[i__5] .i; t[i__3].r = z__1.r, t[i__3].i = z__1.i; i__3 = k + k * t_dim1; if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t[k + k * t_dim1]), abs(d__2)) < smin) { i__4 = k + k * t_dim1; t[i__4].r = smin, t[i__4].i = 0.; } /* L100: */ } if (ki < *n) { i__2 = *n - ki; zlatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", & i__2, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki + 1], &scale, &rwork[1], info); i__2 = ki; work[i__2].r = scale, work[i__2].i = 0.; } /* Copy the vector x or Q*x to VL and normalize. */ if (! over) { i__2 = *n - ki + 1; zcopy_(&i__2, &work[ki], &c__1, &vl[ki + is * vl_dim1], &c__1) ; i__2 = *n - ki + 1; ii = izamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - 1; i__2 = ii + is * vl_dim1; remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag( &vl[ii + is * vl_dim1]), abs(d__2))); i__2 = *n - ki + 1; zdscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1); i__2 = ki - 1; for (k = 1; k <= i__2; ++k) { i__3 = k + is * vl_dim1; vl[i__3].r = 0., vl[i__3].i = 0.; /* L110: */ } } else { if (ki < *n) { i__2 = *n - ki; z__1.r = scale, z__1.i = 0.; zgemv_("N", n, &i__2, &c_b2, &vl[(ki + 1) * vl_dim1 + 1], ldvl, &work[ki + 1], &c__1, &z__1, &vl[ki * vl_dim1 + 1], &c__1); } ii = izamax_(n, &vl[ki * vl_dim1 + 1], &c__1); i__2 = ii + ki * vl_dim1; remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag( &vl[ii + ki * vl_dim1]), abs(d__2))); zdscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1); } /* Set back the original diagonal elements of T. */ i__2 = *n; for (k = ki + 1; k <= i__2; ++k) { i__3 = k + k * t_dim1; i__4 = k + *n; t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i; /* L120: */ } ++is; L130: ; } } return 0; /* End of ZTREVC */ } /* ztrevc_ */