/* zlarz.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static integer c__1 = 1; /* Subroutine */ int zlarz_(char *side, integer *m, integer *n, integer *l, doublecomplex *v, integer *incv, doublecomplex *tau, doublecomplex * c__, integer *ldc, doublecomplex *work) { /* System generated locals */ integer c_dim1, c_offset; doublecomplex z__1; /* Local variables */ extern logical lsame_(char *, char *); extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zgeru_(integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *) , zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), zlacgv_(integer *, doublecomplex *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLARZ applies a complex elementary reflector H to a complex */ /* M-by-N matrix C, from either the left or the right. H is represented */ /* in the form */ /* H = I - tau * v * v' */ /* where tau is a complex scalar and v is a complex vector. */ /* If tau = 0, then H is taken to be the unit matrix. */ /* To apply H' (the conjugate transpose of H), supply conjg(tau) instead */ /* tau. */ /* H is a product of k elementary reflectors as returned by ZTZRZF. */ /* Arguments */ /* ========= */ /* SIDE (input) CHARACTER*1 */ /* = 'L': form H * C */ /* = 'R': form C * H */ /* M (input) INTEGER */ /* The number of rows of the matrix C. */ /* N (input) INTEGER */ /* The number of columns of the matrix C. */ /* L (input) INTEGER */ /* The number of entries of the vector V containing */ /* the meaningful part of the Householder vectors. */ /* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */ /* V (input) COMPLEX*16 array, dimension (1+(L-1)*abs(INCV)) */ /* The vector v in the representation of H as returned by */ /* ZTZRZF. V is not used if TAU = 0. */ /* INCV (input) INTEGER */ /* The increment between elements of v. INCV <> 0. */ /* TAU (input) COMPLEX*16 */ /* The value tau in the representation of H. */ /* C (input/output) COMPLEX*16 array, dimension (LDC,N) */ /* On entry, the M-by-N matrix C. */ /* On exit, C is overwritten by the matrix H * C if SIDE = 'L', */ /* or C * H if SIDE = 'R'. */ /* LDC (input) INTEGER */ /* The leading dimension of the array C. LDC >= max(1,M). */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (N) if SIDE = 'L' */ /* or (M) if SIDE = 'R' */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --v; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ if (lsame_(side, "L")) { /* Form H * C */ if (tau->r != 0. || tau->i != 0.) { /* w( 1:n ) = conjg( C( 1, 1:n ) ) */ zcopy_(n, &c__[c_offset], ldc, &work[1], &c__1); zlacgv_(n, &work[1], &c__1); /* w( 1:n ) = conjg( w( 1:n ) + C( m-l+1:m, 1:n )' * v( 1:l ) ) */ zgemv_("Conjugate transpose", l, n, &c_b1, &c__[*m - *l + 1 + c_dim1], ldc, &v[1], incv, &c_b1, &work[1], &c__1); zlacgv_(n, &work[1], &c__1); /* C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n ) */ z__1.r = -tau->r, z__1.i = -tau->i; zaxpy_(n, &z__1, &work[1], &c__1, &c__[c_offset], ldc); /* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... */ /* tau * v( 1:l ) * conjg( w( 1:n )' ) */ z__1.r = -tau->r, z__1.i = -tau->i; zgeru_(l, n, &z__1, &v[1], incv, &work[1], &c__1, &c__[*m - *l + 1 + c_dim1], ldc); } } else { /* Form C * H */ if (tau->r != 0. || tau->i != 0.) { /* w( 1:m ) = C( 1:m, 1 ) */ zcopy_(m, &c__[c_offset], &c__1, &work[1], &c__1); /* w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l ) */ zgemv_("No transpose", m, l, &c_b1, &c__[(*n - *l + 1) * c_dim1 + 1], ldc, &v[1], incv, &c_b1, &work[1], &c__1); /* C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m ) */ z__1.r = -tau->r, z__1.i = -tau->i; zaxpy_(m, &z__1, &work[1], &c__1, &c__[c_offset], &c__1); /* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... */ /* tau * w( 1:m ) * v( 1:l )' */ z__1.r = -tau->r, z__1.i = -tau->i; zgerc_(m, l, &z__1, &work[1], &c__1, &v[1], incv, &c__[(*n - *l + 1) * c_dim1 + 1], ldc); } } return 0; /* End of ZLARZ */ } /* zlarz_ */