/* zlaqps.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; /* Subroutine */ int zlaqps_(integer *m, integer *n, integer *offset, integer *nb, integer *kb, doublecomplex *a, integer *lda, integer *jpvt, doublecomplex *tau, doublereal *vn1, doublereal *vn2, doublecomplex * auxv, doublecomplex *f, integer *ldf) { /* System generated locals */ integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2, i__3; doublereal d__1, d__2; doublecomplex z__1; /* Builtin functions */ double sqrt(doublereal); void d_cnjg(doublecomplex *, doublecomplex *); double z_abs(doublecomplex *); integer i_dnnt(doublereal *); /* Local variables */ integer j, k, rk; doublecomplex akk; integer pvt; doublereal temp, temp2, tol3z; integer itemp; extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_( char *); extern integer idamax_(integer *, doublereal *, integer *); integer lsticc; extern /* Subroutine */ int zlarfp_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *); integer lastrk; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLAQPS computes a step of QR factorization with column pivoting */ /* of a complex M-by-N matrix A by using Blas-3. It tries to factorize */ /* NB columns from A starting from the row OFFSET+1, and updates all */ /* of the matrix with Blas-3 xGEMM. */ /* In some cases, due to catastrophic cancellations, it cannot */ /* factorize NB columns. Hence, the actual number of factorized */ /* columns is returned in KB. */ /* Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0 */ /* OFFSET (input) INTEGER */ /* The number of rows of A that have been factorized in */ /* previous steps. */ /* NB (input) INTEGER */ /* The number of columns to factorize. */ /* KB (output) INTEGER */ /* The number of columns actually factorized. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, block A(OFFSET+1:M,1:KB) is the triangular */ /* factor obtained and block A(1:OFFSET,1:N) has been */ /* accordingly pivoted, but no factorized. */ /* The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has */ /* been updated. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* JPVT (input/output) INTEGER array, dimension (N) */ /* JPVT(I) = K <==> Column K of the full matrix A has been */ /* permuted into position I in AP. */ /* TAU (output) COMPLEX*16 array, dimension (KB) */ /* The scalar factors of the elementary reflectors. */ /* VN1 (input/output) DOUBLE PRECISION array, dimension (N) */ /* The vector with the partial column norms. */ /* VN2 (input/output) DOUBLE PRECISION array, dimension (N) */ /* The vector with the exact column norms. */ /* AUXV (input/output) COMPLEX*16 array, dimension (NB) */ /* Auxiliar vector. */ /* F (input/output) COMPLEX*16 array, dimension (LDF,NB) */ /* Matrix F' = L*Y'*A. */ /* LDF (input) INTEGER */ /* The leading dimension of the array F. LDF >= max(1,N). */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */ /* X. Sun, Computer Science Dept., Duke University, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --jpvt; --tau; --vn1; --vn2; --auxv; f_dim1 = *ldf; f_offset = 1 + f_dim1; f -= f_offset; /* Function Body */ /* Computing MIN */ i__1 = *m, i__2 = *n + *offset; lastrk = min(i__1,i__2); lsticc = 0; k = 0; tol3z = sqrt(dlamch_("Epsilon")); /* Beginning of while loop. */ L10: if (k < *nb && lsticc == 0) { ++k; rk = *offset + k; /* Determine ith pivot column and swap if necessary */ i__1 = *n - k + 1; pvt = k - 1 + idamax_(&i__1, &vn1[k], &c__1); if (pvt != k) { zswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1); i__1 = k - 1; zswap_(&i__1, &f[pvt + f_dim1], ldf, &f[k + f_dim1], ldf); itemp = jpvt[pvt]; jpvt[pvt] = jpvt[k]; jpvt[k] = itemp; vn1[pvt] = vn1[k]; vn2[pvt] = vn2[k]; } /* Apply previous Householder reflectors to column K: */ /* A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'. */ if (k > 1) { i__1 = k - 1; for (j = 1; j <= i__1; ++j) { i__2 = k + j * f_dim1; d_cnjg(&z__1, &f[k + j * f_dim1]); f[i__2].r = z__1.r, f[i__2].i = z__1.i; /* L20: */ } i__1 = *m - rk + 1; i__2 = k - 1; z__1.r = -1., z__1.i = -0.; zgemv_("No transpose", &i__1, &i__2, &z__1, &a[rk + a_dim1], lda, &f[k + f_dim1], ldf, &c_b2, &a[rk + k * a_dim1], &c__1); i__1 = k - 1; for (j = 1; j <= i__1; ++j) { i__2 = k + j * f_dim1; d_cnjg(&z__1, &f[k + j * f_dim1]); f[i__2].r = z__1.r, f[i__2].i = z__1.i; /* L30: */ } } /* Generate elementary reflector H(k). */ if (rk < *m) { i__1 = *m - rk + 1; zlarfp_(&i__1, &a[rk + k * a_dim1], &a[rk + 1 + k * a_dim1], & c__1, &tau[k]); } else { zlarfp_(&c__1, &a[rk + k * a_dim1], &a[rk + k * a_dim1], &c__1, & tau[k]); } i__1 = rk + k * a_dim1; akk.r = a[i__1].r, akk.i = a[i__1].i; i__1 = rk + k * a_dim1; a[i__1].r = 1., a[i__1].i = 0.; /* Compute Kth column of F: */ /* Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K). */ if (k < *n) { i__1 = *m - rk + 1; i__2 = *n - k; zgemv_("Conjugate transpose", &i__1, &i__2, &tau[k], &a[rk + (k + 1) * a_dim1], lda, &a[rk + k * a_dim1], &c__1, &c_b1, &f[ k + 1 + k * f_dim1], &c__1); } /* Padding F(1:K,K) with zeros. */ i__1 = k; for (j = 1; j <= i__1; ++j) { i__2 = j + k * f_dim1; f[i__2].r = 0., f[i__2].i = 0.; /* L40: */ } /* Incremental updating of F: */ /* F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)' */ /* *A(RK:M,K). */ if (k > 1) { i__1 = *m - rk + 1; i__2 = k - 1; i__3 = k; z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i; zgemv_("Conjugate transpose", &i__1, &i__2, &z__1, &a[rk + a_dim1] , lda, &a[rk + k * a_dim1], &c__1, &c_b1, &auxv[1], &c__1); i__1 = k - 1; zgemv_("No transpose", n, &i__1, &c_b2, &f[f_dim1 + 1], ldf, & auxv[1], &c__1, &c_b2, &f[k * f_dim1 + 1], &c__1); } /* Update the current row of A: */ /* A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'. */ if (k < *n) { i__1 = *n - k; z__1.r = -1., z__1.i = -0.; zgemm_("No transpose", "Conjugate transpose", &c__1, &i__1, &k, & z__1, &a[rk + a_dim1], lda, &f[k + 1 + f_dim1], ldf, & c_b2, &a[rk + (k + 1) * a_dim1], lda); } /* Update partial column norms. */ if (rk < lastrk) { i__1 = *n; for (j = k + 1; j <= i__1; ++j) { if (vn1[j] != 0.) { /* NOTE: The following 4 lines follow from the analysis in */ /* Lapack Working Note 176. */ temp = z_abs(&a[rk + j * a_dim1]) / vn1[j]; /* Computing MAX */ d__1 = 0., d__2 = (temp + 1.) * (1. - temp); temp = max(d__1,d__2); /* Computing 2nd power */ d__1 = vn1[j] / vn2[j]; temp2 = temp * (d__1 * d__1); if (temp2 <= tol3z) { vn2[j] = (doublereal) lsticc; lsticc = j; } else { vn1[j] *= sqrt(temp); } } /* L50: */ } } i__1 = rk + k * a_dim1; a[i__1].r = akk.r, a[i__1].i = akk.i; /* End of while loop. */ goto L10; } *kb = k; rk = *offset + *kb; /* Apply the block reflector to the rest of the matrix: */ /* A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - */ /* A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'. */ /* Computing MIN */ i__1 = *n, i__2 = *m - *offset; if (*kb < min(i__1,i__2)) { i__1 = *m - rk; i__2 = *n - *kb; z__1.r = -1., z__1.i = -0.; zgemm_("No transpose", "Conjugate transpose", &i__1, &i__2, kb, &z__1, &a[rk + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b2, & a[rk + 1 + (*kb + 1) * a_dim1], lda); } /* Recomputation of difficult columns. */ L60: if (lsticc > 0) { itemp = i_dnnt(&vn2[lsticc]); i__1 = *m - rk; vn1[lsticc] = dznrm2_(&i__1, &a[rk + 1 + lsticc * a_dim1], &c__1); /* NOTE: The computation of VN1( LSTICC ) relies on the fact that */ /* SNRM2 does not fail on vectors with norm below the value of */ /* SQRT(DLAMCH('S')) */ vn2[lsticc] = vn1[lsticc]; lsticc = itemp; goto L60; } return 0; /* End of ZLAQPS */ } /* zlaqps_ */