/* zlaqhe.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zlaqhe_(char *uplo, integer *n, doublecomplex *a, integer *lda, doublereal *s, doublereal *scond, doublereal *amax, char *equed) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; doublereal d__1; doublecomplex z__1; /* Local variables */ integer i__, j; doublereal cj, large; extern logical lsame_(char *, char *); doublereal small; extern doublereal dlamch_(char *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLAQHE equilibrates a Hermitian matrix A using the scaling factors */ /* in the vector S. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* Hermitian matrix A is stored. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */ /* n by n upper triangular part of A contains the upper */ /* triangular part of the matrix A, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading n by n lower triangular part of A contains the lower */ /* triangular part of the matrix A, and the strictly upper */ /* triangular part of A is not referenced. */ /* On exit, if EQUED = 'Y', the equilibrated matrix: */ /* diag(S) * A * diag(S). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(N,1). */ /* S (input) DOUBLE PRECISION array, dimension (N) */ /* The scale factors for A. */ /* SCOND (input) DOUBLE PRECISION */ /* Ratio of the smallest S(i) to the largest S(i). */ /* AMAX (input) DOUBLE PRECISION */ /* Absolute value of largest matrix entry. */ /* EQUED (output) CHARACTER*1 */ /* Specifies whether or not equilibration was done. */ /* = 'N': No equilibration. */ /* = 'Y': Equilibration was done, i.e., A has been replaced by */ /* diag(S) * A * diag(S). */ /* Internal Parameters */ /* =================== */ /* THRESH is a threshold value used to decide if scaling should be done */ /* based on the ratio of the scaling factors. If SCOND < THRESH, */ /* scaling is done. */ /* LARGE and SMALL are threshold values used to decide if scaling should */ /* be done based on the absolute size of the largest matrix element. */ /* If AMAX > LARGE or AMAX < SMALL, scaling is done. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --s; /* Function Body */ if (*n <= 0) { *(unsigned char *)equed = 'N'; return 0; } /* Initialize LARGE and SMALL. */ small = dlamch_("Safe minimum") / dlamch_("Precision"); large = 1. / small; if (*scond >= .1 && *amax >= small && *amax <= large) { /* No equilibration */ *(unsigned char *)equed = 'N'; } else { /* Replace A by diag(S) * A * diag(S). */ if (lsame_(uplo, "U")) { /* Upper triangle of A is stored. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { cj = s[j]; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; d__1 = cj * s[i__]; i__4 = i__ + j * a_dim1; z__1.r = d__1 * a[i__4].r, z__1.i = d__1 * a[i__4].i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L10: */ } i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; d__1 = cj * cj * a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; /* L20: */ } } else { /* Lower triangle of A is stored. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { cj = s[j]; i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; d__1 = cj * cj * a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; d__1 = cj * s[i__]; i__4 = i__ + j * a_dim1; z__1.r = d__1 * a[i__4].r, z__1.i = d__1 * a[i__4].i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L30: */ } /* L40: */ } } *(unsigned char *)equed = 'Y'; } return 0; /* End of ZLAQHE */ } /* zlaqhe_ */