/* zhbevd.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static doublereal c_b13 = 1.; static integer c__1 = 1; /* Subroutine */ int zhbevd_(char *jobz, char *uplo, integer *n, integer *kd, doublecomplex *ab, integer *ldab, doublereal *w, doublecomplex *z__, integer *ldz, doublecomplex *work, integer *lwork, doublereal *rwork, integer *lrwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, z_dim1, z_offset, i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal eps; integer inde; doublereal anrm; integer imax; doublereal rmin, rmax; integer llwk2; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical lsame_(char *, char *); integer iinfo; extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); integer lwmin; logical lower; integer llrwk; logical wantz; integer indwk2; extern doublereal dlamch_(char *); integer iscale; doublereal safmin; extern doublereal zlanhb_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int xerbla_(char *, integer *); doublereal bignum; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *), zstedc_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *, integer *, integer *, integer *), zhbtrd_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *); integer indwrk, liwmin; extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); integer lrwmin; doublereal smlnum; logical lquery; /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHBEVD computes all the eigenvalues and, optionally, eigenvectors of */ /* a complex Hermitian band matrix A. If eigenvectors are desired, it */ /* uses a divide and conquer algorithm. */ /* The divide and conquer algorithm makes very mild assumptions about */ /* floating point arithmetic. It will work on machines with a guard */ /* digit in add/subtract, or on those binary machines without guard */ /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* AB (input/output) COMPLEX*16 array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix A, stored in the first KD+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* On exit, AB is overwritten by values generated during the */ /* reduction to tridiagonal form. If UPLO = 'U', the first */ /* superdiagonal and the diagonal of the tridiagonal matrix T */ /* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */ /* the diagonal and first subdiagonal of T are returned in the */ /* first two rows of AB. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD + 1. */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) COMPLEX*16 array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */ /* eigenvectors of the matrix A, with the i-th column of Z */ /* holding the eigenvector associated with W(i). */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If N <= 1, LWORK must be at least 1. */ /* If JOBZ = 'N' and N > 1, LWORK must be at least N. */ /* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal sizes of the WORK, RWORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* RWORK (workspace/output) DOUBLE PRECISION array, */ /* dimension (LRWORK) */ /* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */ /* LRWORK (input) INTEGER */ /* The dimension of array RWORK. */ /* If N <= 1, LRWORK must be at least 1. */ /* If JOBZ = 'N' and N > 1, LRWORK must be at least N. */ /* If JOBZ = 'V' and N > 1, LRWORK must be at least */ /* 1 + 5*N + 2*N**2. */ /* If LRWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of array IWORK. */ /* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. */ /* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N . */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, the algorithm failed to converge; i */ /* off-diagonal elements of an intermediate tridiagonal */ /* form did not converge to zero. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); lower = lsame_(uplo, "L"); lquery = *lwork == -1 || *liwork == -1 || *lrwork == -1; *info = 0; if (*n <= 1) { lwmin = 1; lrwmin = 1; liwmin = 1; } else { if (wantz) { /* Computing 2nd power */ i__1 = *n; lwmin = i__1 * i__1 << 1; /* Computing 2nd power */ i__1 = *n; lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1); liwmin = *n * 5 + 3; } else { lwmin = *n; lrwmin = *n; liwmin = 1; } } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lower || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*kd < 0) { *info = -4; } else if (*ldab < *kd + 1) { *info = -6; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -9; } if (*info == 0) { work[1].r = (doublereal) lwmin, work[1].i = 0.; rwork[1] = (doublereal) lrwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -11; } else if (*lrwork < lrwmin && ! lquery) { *info = -13; } else if (*liwork < liwmin && ! lquery) { *info = -15; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZHBEVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { i__1 = ab_dim1 + 1; w[1] = ab[i__1].r; if (wantz) { i__1 = z_dim1 + 1; z__[i__1].r = 1., z__[i__1].i = 0.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = zlanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { if (lower) { zlascl_("B", kd, kd, &c_b13, &sigma, n, n, &ab[ab_offset], ldab, info); } else { zlascl_("Q", kd, kd, &c_b13, &sigma, n, n, &ab[ab_offset], ldab, info); } } /* Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form. */ inde = 1; indwrk = inde + *n; indwk2 = *n * *n + 1; llwk2 = *lwork - indwk2 + 1; llrwk = *lrwork - indwrk + 1; zhbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &rwork[inde], & z__[z_offset], ldz, &work[1], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEDC. */ if (! wantz) { dsterf_(n, &w[1], &rwork[inde], info); } else { zstedc_("I", n, &w[1], &rwork[inde], &work[1], n, &work[indwk2], & llwk2, &rwork[indwrk], &llrwk, &iwork[1], liwork, info); zgemm_("N", "N", n, n, n, &c_b2, &z__[z_offset], ldz, &work[1], n, & c_b1, &work[indwk2], n); zlacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } work[1].r = (doublereal) lwmin, work[1].i = 0.; rwork[1] = (doublereal) lrwmin; iwork[1] = liwmin; return 0; /* End of ZHBEVD */ } /* zhbevd_ */