/* zgecon.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int zgecon_(char *norm, integer *n, doublecomplex *a, integer *lda, doublereal *anorm, doublereal *rcond, doublecomplex * work, doublereal *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1; doublereal d__1, d__2; /* Builtin functions */ double d_imag(doublecomplex *); /* Local variables */ doublereal sl; integer ix; doublereal su; integer kase, kase1; doublereal scale; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *, doublecomplex *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); doublereal ainvnm; extern integer izamax_(integer *, doublecomplex *, integer *); logical onenrm; extern /* Subroutine */ int zdrscl_(integer *, doublereal *, doublecomplex *, integer *); char normin[1]; doublereal smlnum; extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, doublereal *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZGECON estimates the reciprocal of the condition number of a general */ /* complex matrix A, in either the 1-norm or the infinity-norm, using */ /* the LU factorization computed by ZGETRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input) COMPLEX*16 array, dimension (LDA,N) */ /* The factors L and U from the factorization A = P*L*U */ /* as computed by ZGETRF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* ANORM (input) DOUBLE PRECISION */ /* If NORM = '1' or 'O', the 1-norm of the original matrix A. */ /* If NORM = 'I', the infinity-norm of the original matrix A. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; --rwork; /* Function Body */ *info = 0; onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*anorm < 0.) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("ZGECON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } smlnum = dlamch_("Safe minimum"); /* Estimate the norm of inv(A). */ ainvnm = 0.; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(L). */ zlatrs_("Lower", "No transpose", "Unit", normin, n, &a[a_offset], lda, &work[1], &sl, &rwork[1], info); /* Multiply by inv(U). */ zlatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[ a_offset], lda, &work[1], &su, &rwork[*n + 1], info); } else { /* Multiply by inv(U'). */ zlatrs_("Upper", "Conjugate transpose", "Non-unit", normin, n, &a[ a_offset], lda, &work[1], &su, &rwork[*n + 1], info); /* Multiply by inv(L'). */ zlatrs_("Lower", "Conjugate transpose", "Unit", normin, n, &a[ a_offset], lda, &work[1], &sl, &rwork[1], info); } /* Divide X by 1/(SL*SU) if doing so will not cause overflow. */ scale = sl * su; *(unsigned char *)normin = 'Y'; if (scale != 1.) { ix = izamax_(n, &work[1], &c__1); i__1 = ix; if (scale < ((d__1 = work[i__1].r, abs(d__1)) + (d__2 = d_imag(& work[ix]), abs(d__2))) * smlnum || scale == 0.) { goto L20; } zdrscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } L20: return 0; /* End of ZGECON */ } /* zgecon_ */