/* ssygvx.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static real c_b19 = 1.f; /* Subroutine */ int ssygvx_(integer *itype, char *jobz, char *range, char * uplo, integer *n, real *a, integer *lda, real *b, integer *ldb, real * vl, real *vu, integer *il, integer *iu, real *abstol, integer *m, real *w, real *z__, integer *ldz, real *work, integer *lwork, integer *iwork, integer *ifail, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2; /* Local variables */ integer nb; extern logical lsame_(char *, char *); char trans[1]; logical upper; extern /* Subroutine */ int strmm_(char *, char *, char *, char *, integer *, integer *, real *, real *, integer *, real *, integer * ); logical wantz; extern /* Subroutine */ int strsm_(char *, char *, char *, char *, integer *, integer *, real *, real *, integer *, real *, integer * ); logical alleig, indeig, valeig; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer lwkmin; extern /* Subroutine */ int spotrf_(char *, integer *, real *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int ssygst_(integer *, char *, integer *, real *, integer *, real *, integer *, integer *), ssyevx_(char *, char *, char *, integer *, real *, integer *, real *, real *, integer *, integer *, real *, integer *, real *, real *, integer * , real *, integer *, integer *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSYGVX computes selected eigenvalues, and optionally, eigenvectors */ /* of a real generalized symmetric-definite eigenproblem, of the form */ /* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A */ /* and B are assumed to be symmetric and B is also positive definite. */ /* Eigenvalues and eigenvectors can be selected by specifying either a */ /* range of values or a range of indices for the desired eigenvalues. */ /* Arguments */ /* ========= */ /* ITYPE (input) INTEGER */ /* Specifies the problem type to be solved: */ /* = 1: A*x = (lambda)*B*x */ /* = 2: A*B*x = (lambda)*x */ /* = 3: B*A*x = (lambda)*x */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* RANGE (input) CHARACTER*1 */ /* = 'A': all eigenvalues will be found. */ /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ /* will be found. */ /* = 'I': the IL-th through IU-th eigenvalues will be found. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A and B are stored; */ /* = 'L': Lower triangle of A and B are stored. */ /* N (input) INTEGER */ /* The order of the matrix pencil (A,B). N >= 0. */ /* A (input/output) REAL array, dimension (LDA, N) */ /* On entry, the symmetric matrix A. If UPLO = 'U', the */ /* leading N-by-N upper triangular part of A contains the */ /* upper triangular part of the matrix A. If UPLO = 'L', */ /* the leading N-by-N lower triangular part of A contains */ /* the lower triangular part of the matrix A. */ /* On exit, the lower triangle (if UPLO='L') or the upper */ /* triangle (if UPLO='U') of A, including the diagonal, is */ /* destroyed. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input/output) REAL array, dimension (LDA, N) */ /* On entry, the symmetric matrix B. If UPLO = 'U', the */ /* leading N-by-N upper triangular part of B contains the */ /* upper triangular part of the matrix B. If UPLO = 'L', */ /* the leading N-by-N lower triangular part of B contains */ /* the lower triangular part of the matrix B. */ /* On exit, if INFO <= N, the part of B containing the matrix is */ /* overwritten by the triangular factor U or L from the Cholesky */ /* factorization B = U**T*U or B = L*L**T. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* VL (input) REAL */ /* VU (input) REAL */ /* If RANGE='V', the lower and upper bounds of the interval to */ /* be searched for eigenvalues. VL < VU. */ /* Not referenced if RANGE = 'A' or 'I'. */ /* IL (input) INTEGER */ /* IU (input) INTEGER */ /* If RANGE='I', the indices (in ascending order) of the */ /* smallest and largest eigenvalues to be returned. */ /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ /* Not referenced if RANGE = 'A' or 'V'. */ /* ABSTOL (input) REAL */ /* The absolute error tolerance for the eigenvalues. */ /* An approximate eigenvalue is accepted as converged */ /* when it is determined to lie in an interval [a,b] */ /* of width less than or equal to */ /* ABSTOL + EPS * max( |a|,|b| ) , */ /* where EPS is the machine precision. If ABSTOL is less than */ /* or equal to zero, then EPS*|T| will be used in its place, */ /* where |T| is the 1-norm of the tridiagonal matrix obtained */ /* by reducing A to tridiagonal form. */ /* Eigenvalues will be computed most accurately when ABSTOL is */ /* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */ /* If this routine returns with INFO>0, indicating that some */ /* eigenvectors did not converge, try setting ABSTOL to */ /* 2*SLAMCH('S'). */ /* M (output) INTEGER */ /* The total number of eigenvalues found. 0 <= M <= N. */ /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ /* W (output) REAL array, dimension (N) */ /* On normal exit, the first M elements contain the selected */ /* eigenvalues in ascending order. */ /* Z (output) REAL array, dimension (LDZ, max(1,M)) */ /* If JOBZ = 'N', then Z is not referenced. */ /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ /* contain the orthonormal eigenvectors of the matrix A */ /* corresponding to the selected eigenvalues, with the i-th */ /* column of Z holding the eigenvector associated with W(i). */ /* The eigenvectors are normalized as follows: */ /* if ITYPE = 1 or 2, Z**T*B*Z = I; */ /* if ITYPE = 3, Z**T*inv(B)*Z = I. */ /* If an eigenvector fails to converge, then that column of Z */ /* contains the latest approximation to the eigenvector, and the */ /* index of the eigenvector is returned in IFAIL. */ /* Note: the user must ensure that at least max(1,M) columns are */ /* supplied in the array Z; if RANGE = 'V', the exact value of M */ /* is not known in advance and an upper bound must be used. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= max(1,8*N). */ /* For optimal efficiency, LWORK >= (NB+3)*N, */ /* where NB is the blocksize for SSYTRD returned by ILAENV. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* IWORK (workspace) INTEGER array, dimension (5*N) */ /* IFAIL (output) INTEGER array, dimension (N) */ /* If JOBZ = 'V', then if INFO = 0, the first M elements of */ /* IFAIL are zero. If INFO > 0, then IFAIL contains the */ /* indices of the eigenvectors that failed to converge. */ /* If JOBZ = 'N', then IFAIL is not referenced. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: SPOTRF or SSYEVX returned an error code: */ /* <= N: if INFO = i, SSYEVX failed to converge; */ /* i eigenvectors failed to converge. Their indices */ /* are stored in array IFAIL. */ /* > N: if INFO = N + i, for 1 <= i <= N, then the leading */ /* minor of order i of B is not positive definite. */ /* The factorization of B could not be completed and */ /* no eigenvalues or eigenvectors were computed. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --iwork; --ifail; /* Function Body */ upper = lsame_(uplo, "U"); wantz = lsame_(jobz, "V"); alleig = lsame_(range, "A"); valeig = lsame_(range, "V"); indeig = lsame_(range, "I"); lquery = *lwork == -1; *info = 0; if (*itype < 1 || *itype > 3) { *info = -1; } else if (! (wantz || lsame_(jobz, "N"))) { *info = -2; } else if (! (alleig || valeig || indeig)) { *info = -3; } else if (! (upper || lsame_(uplo, "L"))) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else { if (valeig) { if (*n > 0 && *vu <= *vl) { *info = -11; } } else if (indeig) { if (*il < 1 || *il > max(1,*n)) { *info = -12; } else if (*iu < min(*n,*il) || *iu > *n) { *info = -13; } } } if (*info == 0) { if (*ldz < 1 || wantz && *ldz < *n) { *info = -18; } } if (*info == 0) { /* Computing MAX */ i__1 = 1, i__2 = *n << 3; lwkmin = max(i__1,i__2); nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); /* Computing MAX */ i__1 = lwkmin, i__2 = (nb + 3) * *n; lwkopt = max(i__1,i__2); work[1] = (real) lwkopt; if (*lwork < lwkmin && ! lquery) { *info = -20; } } if (*info != 0) { i__1 = -(*info); xerbla_("SSYGVX", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } /* Form a Cholesky factorization of B. */ spotrf_(uplo, n, &b[b_offset], ldb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem and solve. */ ssygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info); ssyevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol, m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &iwork[1], &ifail[ 1], info); if (wantz) { /* Backtransform eigenvectors to the original problem. */ if (*info > 0) { *m = *info - 1; } if (*itype == 1 || *itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */ /* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (upper) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'T'; } strsm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset] , ldb, &z__[z_offset], ldz); } else if (*itype == 3) { /* For B*A*x=(lambda)*x; */ /* backtransform eigenvectors: x = L*y or U'*y */ if (upper) { *(unsigned char *)trans = 'T'; } else { *(unsigned char *)trans = 'N'; } strmm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset] , ldb, &z__[z_offset], ldz); } } /* Set WORK(1) to optimal workspace size. */ work[1] = (real) lwkopt; return 0; /* End of SSYGVX */ } /* ssygvx_ */