/* ssptri.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static real c_b11 = -1.f; static real c_b13 = 0.f; /* Subroutine */ int ssptri_(char *uplo, integer *n, real *ap, integer *ipiv, real *work, integer *info) { /* System generated locals */ integer i__1; real r__1; /* Local variables */ real d__; integer j, k; real t, ak; integer kc, kp, kx, kpc, npp; real akp1, temp; extern doublereal sdot_(integer *, real *, integer *, real *, integer *); real akkp1; extern logical lsame_(char *, char *); integer kstep; logical upper; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), sswap_(integer *, real *, integer *, real *, integer * ), sspmv_(char *, integer *, real *, real *, real *, integer *, real *, real *, integer *), xerbla_(char *, integer *); integer kcnext; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSPTRI computes the inverse of a real symmetric indefinite matrix */ /* A in packed storage using the factorization A = U*D*U**T or */ /* A = L*D*L**T computed by SSPTRF. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the details of the factorization are stored */ /* as an upper or lower triangular matrix. */ /* = 'U': Upper triangular, form is A = U*D*U**T; */ /* = 'L': Lower triangular, form is A = L*D*L**T. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input/output) REAL array, dimension (N*(N+1)/2) */ /* On entry, the block diagonal matrix D and the multipliers */ /* used to obtain the factor U or L as computed by SSPTRF, */ /* stored as a packed triangular matrix. */ /* On exit, if INFO = 0, the (symmetric) inverse of the original */ /* matrix, stored as a packed triangular matrix. The j-th column */ /* of inv(A) is stored in the array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; */ /* if UPLO = 'L', */ /* AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. */ /* IPIV (input) INTEGER array, dimension (N) */ /* Details of the interchanges and the block structure of D */ /* as determined by SSPTRF. */ /* WORK (workspace) REAL array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */ /* inverse could not be computed. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --work; --ipiv; --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); xerbla_("SSPTRI", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Check that the diagonal matrix D is nonsingular. */ if (upper) { /* Upper triangular storage: examine D from bottom to top */ kp = *n * (*n + 1) / 2; for (*info = *n; *info >= 1; --(*info)) { if (ipiv[*info] > 0 && ap[kp] == 0.f) { return 0; } kp -= *info; /* L10: */ } } else { /* Lower triangular storage: examine D from top to bottom. */ kp = 1; i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { if (ipiv[*info] > 0 && ap[kp] == 0.f) { return 0; } kp = kp + *n - *info + 1; /* L20: */ } } *info = 0; if (upper) { /* Compute inv(A) from the factorization A = U*D*U'. */ /* K is the main loop index, increasing from 1 to N in steps of */ /* 1 or 2, depending on the size of the diagonal blocks. */ k = 1; kc = 1; L30: /* If K > N, exit from loop. */ if (k > *n) { goto L50; } kcnext = kc + k; if (ipiv[k] > 0) { /* 1 x 1 diagonal block */ /* Invert the diagonal block. */ ap[kc + k - 1] = 1.f / ap[kc + k - 1]; /* Compute column K of the inverse. */ if (k > 1) { i__1 = k - 1; scopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1); i__1 = k - 1; sspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, & ap[kc], &c__1); i__1 = k - 1; ap[kc + k - 1] -= sdot_(&i__1, &work[1], &c__1, &ap[kc], & c__1); } kstep = 1; } else { /* 2 x 2 diagonal block */ /* Invert the diagonal block. */ t = (r__1 = ap[kcnext + k - 1], dabs(r__1)); ak = ap[kc + k - 1] / t; akp1 = ap[kcnext + k] / t; akkp1 = ap[kcnext + k - 1] / t; d__ = t * (ak * akp1 - 1.f); ap[kc + k - 1] = akp1 / d__; ap[kcnext + k] = ak / d__; ap[kcnext + k - 1] = -akkp1 / d__; /* Compute columns K and K+1 of the inverse. */ if (k > 1) { i__1 = k - 1; scopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1); i__1 = k - 1; sspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, & ap[kc], &c__1); i__1 = k - 1; ap[kc + k - 1] -= sdot_(&i__1, &work[1], &c__1, &ap[kc], & c__1); i__1 = k - 1; ap[kcnext + k - 1] -= sdot_(&i__1, &ap[kc], &c__1, &ap[kcnext] , &c__1); i__1 = k - 1; scopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1); i__1 = k - 1; sspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, & ap[kcnext], &c__1); i__1 = k - 1; ap[kcnext + k] -= sdot_(&i__1, &work[1], &c__1, &ap[kcnext], & c__1); } kstep = 2; kcnext = kcnext + k + 1; } kp = (i__1 = ipiv[k], abs(i__1)); if (kp != k) { /* Interchange rows and columns K and KP in the leading */ /* submatrix A(1:k+1,1:k+1) */ kpc = (kp - 1) * kp / 2 + 1; i__1 = kp - 1; sswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1); kx = kpc + kp - 1; i__1 = k - 1; for (j = kp + 1; j <= i__1; ++j) { kx = kx + j - 1; temp = ap[kc + j - 1]; ap[kc + j - 1] = ap[kx]; ap[kx] = temp; /* L40: */ } temp = ap[kc + k - 1]; ap[kc + k - 1] = ap[kpc + kp - 1]; ap[kpc + kp - 1] = temp; if (kstep == 2) { temp = ap[kc + k + k - 1]; ap[kc + k + k - 1] = ap[kc + k + kp - 1]; ap[kc + k + kp - 1] = temp; } } k += kstep; kc = kcnext; goto L30; L50: ; } else { /* Compute inv(A) from the factorization A = L*D*L'. */ /* K is the main loop index, increasing from 1 to N in steps of */ /* 1 or 2, depending on the size of the diagonal blocks. */ npp = *n * (*n + 1) / 2; k = *n; kc = npp; L60: /* If K < 1, exit from loop. */ if (k < 1) { goto L80; } kcnext = kc - (*n - k + 2); if (ipiv[k] > 0) { /* 1 x 1 diagonal block */ /* Invert the diagonal block. */ ap[kc] = 1.f / ap[kc]; /* Compute column K of the inverse. */ if (k < *n) { i__1 = *n - k; scopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1); i__1 = *n - k; sspmv_(uplo, &i__1, &c_b11, &ap[kc + *n - k + 1], &work[1], & c__1, &c_b13, &ap[kc + 1], &c__1); i__1 = *n - k; ap[kc] -= sdot_(&i__1, &work[1], &c__1, &ap[kc + 1], &c__1); } kstep = 1; } else { /* 2 x 2 diagonal block */ /* Invert the diagonal block. */ t = (r__1 = ap[kcnext + 1], dabs(r__1)); ak = ap[kcnext] / t; akp1 = ap[kc] / t; akkp1 = ap[kcnext + 1] / t; d__ = t * (ak * akp1 - 1.f); ap[kcnext] = akp1 / d__; ap[kc] = ak / d__; ap[kcnext + 1] = -akkp1 / d__; /* Compute columns K-1 and K of the inverse. */ if (k < *n) { i__1 = *n - k; scopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1); i__1 = *n - k; sspmv_(uplo, &i__1, &c_b11, &ap[kc + (*n - k + 1)], &work[1], &c__1, &c_b13, &ap[kc + 1], &c__1); i__1 = *n - k; ap[kc] -= sdot_(&i__1, &work[1], &c__1, &ap[kc + 1], &c__1); i__1 = *n - k; ap[kcnext + 1] -= sdot_(&i__1, &ap[kc + 1], &c__1, &ap[kcnext + 2], &c__1); i__1 = *n - k; scopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1); i__1 = *n - k; sspmv_(uplo, &i__1, &c_b11, &ap[kc + (*n - k + 1)], &work[1], &c__1, &c_b13, &ap[kcnext + 2], &c__1); i__1 = *n - k; ap[kcnext] -= sdot_(&i__1, &work[1], &c__1, &ap[kcnext + 2], & c__1); } kstep = 2; kcnext -= *n - k + 3; } kp = (i__1 = ipiv[k], abs(i__1)); if (kp != k) { /* Interchange rows and columns K and KP in the trailing */ /* submatrix A(k-1:n,k-1:n) */ kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1; if (kp < *n) { i__1 = *n - kp; sswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], & c__1); } kx = kc + kp - k; i__1 = kp - 1; for (j = k + 1; j <= i__1; ++j) { kx = kx + *n - j + 1; temp = ap[kc + j - k]; ap[kc + j - k] = ap[kx]; ap[kx] = temp; /* L70: */ } temp = ap[kc]; ap[kc] = ap[kpc]; ap[kpc] = temp; if (kstep == 2) { temp = ap[kc - *n + k - 1]; ap[kc - *n + k - 1] = ap[kc - *n + kp - 1]; ap[kc - *n + kp - 1] = temp; } } k -= kstep; kc = kcnext; goto L60; L80: ; } return 0; /* End of SSPTRI */ } /* ssptri_ */