/* spptri.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static real c_b8 = 1.f; static integer c__1 = 1; /* Subroutine */ int spptri_(char *uplo, integer *n, real *ap, integer *info) { /* System generated locals */ integer i__1, i__2; /* Local variables */ integer j, jc, jj; real ajj; integer jjn; extern doublereal sdot_(integer *, real *, integer *, real *, integer *); extern /* Subroutine */ int sspr_(char *, integer *, real *, real *, integer *, real *); extern logical lsame_(char *, char *); extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); logical upper; extern /* Subroutine */ int stpmv_(char *, char *, char *, integer *, real *, real *, integer *), xerbla_(char * , integer *), stptri_(char *, char *, integer *, real *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SPPTRI computes the inverse of a real symmetric positive definite */ /* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */ /* computed by SPPTRF. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangular factor is stored in AP; */ /* = 'L': Lower triangular factor is stored in AP. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input/output) REAL array, dimension (N*(N+1)/2) */ /* On entry, the triangular factor U or L from the Cholesky */ /* factorization A = U**T*U or A = L*L**T, packed columnwise as */ /* a linear array. The j-th column of U or L is stored in the */ /* array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */ /* On exit, the upper or lower triangle of the (symmetric) */ /* inverse of A, overwriting the input factor U or L. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the (i,i) element of the factor U or L is */ /* zero, and the inverse could not be computed. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); xerbla_("SPPTRI", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Invert the triangular Cholesky factor U or L. */ stptri_(uplo, "Non-unit", n, &ap[1], info); if (*info > 0) { return 0; } if (upper) { /* Compute the product inv(U) * inv(U)'. */ jj = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { jc = jj + 1; jj += j; if (j > 1) { i__2 = j - 1; sspr_("Upper", &i__2, &c_b8, &ap[jc], &c__1, &ap[1]); } ajj = ap[jj]; sscal_(&j, &ajj, &ap[jc], &c__1); /* L10: */ } } else { /* Compute the product inv(L)' * inv(L). */ jj = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { jjn = jj + *n - j + 1; i__2 = *n - j + 1; ap[jj] = sdot_(&i__2, &ap[jj], &c__1, &ap[jj], &c__1); if (j < *n) { i__2 = *n - j; stpmv_("Lower", "Transpose", "Non-unit", &i__2, &ap[jjn], &ap[ jj + 1], &c__1); } jj = jjn; /* L20: */ } } return 0; /* End of SPPTRI */ } /* spptri_ */