/* slatdf.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static real c_b23 = 1.f; static real c_b37 = -1.f; /* Subroutine */ int slatdf_(integer *ijob, integer *n, real *z__, integer * ldz, real *rhs, real *rdsum, real *rdscal, integer *ipiv, integer * jpiv) { /* System generated locals */ integer z_dim1, z_offset, i__1, i__2; real r__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, k; real bm, bp, xm[8], xp[8]; integer info; real temp; extern doublereal sdot_(integer *, real *, integer *, real *, integer *); real work[32]; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); real pmone; extern doublereal sasum_(integer *, real *, integer *); real sminu; integer iwork[8]; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), saxpy_(integer *, real *, real *, integer *, real *, integer *); real splus; extern /* Subroutine */ int sgesc2_(integer *, real *, integer *, real *, integer *, integer *, real *), sgecon_(char *, integer *, real *, integer *, real *, real *, real *, integer *, integer *), slassq_(integer *, real *, integer *, real *, real *), slaswp_( integer *, real *, integer *, integer *, integer *, integer *, integer *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLATDF uses the LU factorization of the n-by-n matrix Z computed by */ /* SGETC2 and computes a contribution to the reciprocal Dif-estimate */ /* by solving Z * x = b for x, and choosing the r.h.s. b such that */ /* the norm of x is as large as possible. On entry RHS = b holds the */ /* contribution from earlier solved sub-systems, and on return RHS = x. */ /* The factorization of Z returned by SGETC2 has the form Z = P*L*U*Q, */ /* where P and Q are permutation matrices. L is lower triangular with */ /* unit diagonal elements and U is upper triangular. */ /* Arguments */ /* ========= */ /* IJOB (input) INTEGER */ /* IJOB = 2: First compute an approximative null-vector e */ /* of Z using SGECON, e is normalized and solve for */ /* Zx = +-e - f with the sign giving the greater value */ /* of 2-norm(x). About 5 times as expensive as Default. */ /* IJOB .ne. 2: Local look ahead strategy where all entries of */ /* the r.h.s. b is choosen as either +1 or -1 (Default). */ /* N (input) INTEGER */ /* The number of columns of the matrix Z. */ /* Z (input) REAL array, dimension (LDZ, N) */ /* On entry, the LU part of the factorization of the n-by-n */ /* matrix Z computed by SGETC2: Z = P * L * U * Q */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDA >= max(1, N). */ /* RHS (input/output) REAL array, dimension N. */ /* On entry, RHS contains contributions from other subsystems. */ /* On exit, RHS contains the solution of the subsystem with */ /* entries acoording to the value of IJOB (see above). */ /* RDSUM (input/output) REAL */ /* On entry, the sum of squares of computed contributions to */ /* the Dif-estimate under computation by STGSYL, where the */ /* scaling factor RDSCAL (see below) has been factored out. */ /* On exit, the corresponding sum of squares updated with the */ /* contributions from the current sub-system. */ /* If TRANS = 'T' RDSUM is not touched. */ /* NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL. */ /* RDSCAL (input/output) REAL */ /* On entry, scaling factor used to prevent overflow in RDSUM. */ /* On exit, RDSCAL is updated w.r.t. the current contributions */ /* in RDSUM. */ /* If TRANS = 'T', RDSCAL is not touched. */ /* NOTE: RDSCAL only makes sense when STGSY2 is called by */ /* STGSYL. */ /* IPIV (input) INTEGER array, dimension (N). */ /* The pivot indices; for 1 <= i <= N, row i of the */ /* matrix has been interchanged with row IPIV(i). */ /* JPIV (input) INTEGER array, dimension (N). */ /* The pivot indices; for 1 <= j <= N, column j of the */ /* matrix has been interchanged with column JPIV(j). */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ /* Umea University, S-901 87 Umea, Sweden. */ /* This routine is a further developed implementation of algorithm */ /* BSOLVE in [1] using complete pivoting in the LU factorization. */ /* [1] Bo Kagstrom and Lars Westin, */ /* Generalized Schur Methods with Condition Estimators for */ /* Solving the Generalized Sylvester Equation, IEEE Transactions */ /* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */ /* [2] Peter Poromaa, */ /* On Efficient and Robust Estimators for the Separation */ /* between two Regular Matrix Pairs with Applications in */ /* Condition Estimation. Report IMINF-95.05, Departement of */ /* Computing Science, Umea University, S-901 87 Umea, Sweden, 1995. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --rhs; --ipiv; --jpiv; /* Function Body */ if (*ijob != 2) { /* Apply permutations IPIV to RHS */ i__1 = *n - 1; slaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1); /* Solve for L-part choosing RHS either to +1 or -1. */ pmone = -1.f; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { bp = rhs[j] + 1.f; bm = rhs[j] - 1.f; splus = 1.f; /* Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and */ /* SMIN computed more efficiently than in BSOLVE [1]. */ i__2 = *n - j; splus += sdot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1 + j * z_dim1], &c__1); i__2 = *n - j; sminu = sdot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], &c__1); splus *= rhs[j]; if (splus > sminu) { rhs[j] = bp; } else if (sminu > splus) { rhs[j] = bm; } else { /* In this case the updating sums are equal and we can */ /* choose RHS(J) +1 or -1. The first time this happens */ /* we choose -1, thereafter +1. This is a simple way to */ /* get good estimates of matrices like Byers well-known */ /* example (see [1]). (Not done in BSOLVE.) */ rhs[j] += pmone; pmone = 1.f; } /* Compute the remaining r.h.s. */ temp = -rhs[j]; i__2 = *n - j; saxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], &c__1); /* L10: */ } /* Solve for U-part, look-ahead for RHS(N) = +-1. This is not done */ /* in BSOLVE and will hopefully give us a better estimate because */ /* any ill-conditioning of the original matrix is transfered to U */ /* and not to L. U(N, N) is an approximation to sigma_min(LU). */ i__1 = *n - 1; scopy_(&i__1, &rhs[1], &c__1, xp, &c__1); xp[*n - 1] = rhs[*n] + 1.f; rhs[*n] += -1.f; splus = 0.f; sminu = 0.f; for (i__ = *n; i__ >= 1; --i__) { temp = 1.f / z__[i__ + i__ * z_dim1]; xp[i__ - 1] *= temp; rhs[i__] *= temp; i__1 = *n; for (k = i__ + 1; k <= i__1; ++k) { xp[i__ - 1] -= xp[k - 1] * (z__[i__ + k * z_dim1] * temp); rhs[i__] -= rhs[k] * (z__[i__ + k * z_dim1] * temp); /* L20: */ } splus += (r__1 = xp[i__ - 1], dabs(r__1)); sminu += (r__1 = rhs[i__], dabs(r__1)); /* L30: */ } if (splus > sminu) { scopy_(n, xp, &c__1, &rhs[1], &c__1); } /* Apply the permutations JPIV to the computed solution (RHS) */ i__1 = *n - 1; slaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1); /* Compute the sum of squares */ slassq_(n, &rhs[1], &c__1, rdscal, rdsum); } else { /* IJOB = 2, Compute approximate nullvector XM of Z */ sgecon_("I", n, &z__[z_offset], ldz, &c_b23, &temp, work, iwork, & info); scopy_(n, &work[*n], &c__1, xm, &c__1); /* Compute RHS */ i__1 = *n - 1; slaswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1); temp = 1.f / sqrt(sdot_(n, xm, &c__1, xm, &c__1)); sscal_(n, &temp, xm, &c__1); scopy_(n, xm, &c__1, xp, &c__1); saxpy_(n, &c_b23, &rhs[1], &c__1, xp, &c__1); saxpy_(n, &c_b37, xm, &c__1, &rhs[1], &c__1); sgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &temp); sgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &temp); if (sasum_(n, xp, &c__1) > sasum_(n, &rhs[1], &c__1)) { scopy_(n, xp, &c__1, &rhs[1], &c__1); } /* Compute the sum of squares */ slassq_(n, &rhs[1], &c__1, rdscal, rdsum); } return 0; /* End of SLATDF */ } /* slatdf_ */