/* slaln2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int slaln2_(logical *ltrans, integer *na, integer *nw, real * smin, real *ca, real *a, integer *lda, real *d1, real *d2, real *b, integer *ldb, real *wr, real *wi, real *x, integer *ldx, real *scale, real *xnorm, integer *info) { /* Initialized data */ static logical cswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ }; static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ }; static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2, 4,3,2,1 }; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset; real r__1, r__2, r__3, r__4, r__5, r__6; static real equiv_0[4], equiv_1[4]; /* Local variables */ integer j; #define ci (equiv_0) #define cr (equiv_1) real bi1, bi2, br1, br2, xi1, xi2, xr1, xr2, ci21, ci22, cr21, cr22, li21, csi, ui11, lr21, ui12, ui22; #define civ (equiv_0) real csr, ur11, ur12, ur22; #define crv (equiv_1) real bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s, u22abs; integer icmax; real bnorm, cnorm, smini; extern doublereal slamch_(char *); real bignum; extern /* Subroutine */ int sladiv_(real *, real *, real *, real *, real * , real *); real smlnum; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLALN2 solves a system of the form (ca A - w D ) X = s B */ /* or (ca A' - w D) X = s B with possible scaling ("s") and */ /* perturbation of A. (A' means A-transpose.) */ /* A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */ /* real diagonal matrix, w is a real or complex value, and X and B are */ /* NA x 1 matrices -- real if w is real, complex if w is complex. NA */ /* may be 1 or 2. */ /* If w is complex, X and B are represented as NA x 2 matrices, */ /* the first column of each being the real part and the second */ /* being the imaginary part. */ /* "s" is a scaling factor (.LE. 1), computed by SLALN2, which is */ /* so chosen that X can be computed without overflow. X is further */ /* scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */ /* than overflow. */ /* If both singular values of (ca A - w D) are less than SMIN, */ /* SMIN*identity will be used instead of (ca A - w D). If only one */ /* singular value is less than SMIN, one element of (ca A - w D) will be */ /* perturbed enough to make the smallest singular value roughly SMIN. */ /* If both singular values are at least SMIN, (ca A - w D) will not be */ /* perturbed. In any case, the perturbation will be at most some small */ /* multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values */ /* are computed by infinity-norm approximations, and thus will only be */ /* correct to a factor of 2 or so. */ /* Note: all input quantities are assumed to be smaller than overflow */ /* by a reasonable factor. (See BIGNUM.) */ /* Arguments */ /* ========== */ /* LTRANS (input) LOGICAL */ /* =.TRUE.: A-transpose will be used. */ /* =.FALSE.: A will be used (not transposed.) */ /* NA (input) INTEGER */ /* The size of the matrix A. It may (only) be 1 or 2. */ /* NW (input) INTEGER */ /* 1 if "w" is real, 2 if "w" is complex. It may only be 1 */ /* or 2. */ /* SMIN (input) REAL */ /* The desired lower bound on the singular values of A. This */ /* should be a safe distance away from underflow or overflow, */ /* say, between (underflow/machine precision) and (machine */ /* precision * overflow ). (See BIGNUM and ULP.) */ /* CA (input) REAL */ /* The coefficient c, which A is multiplied by. */ /* A (input) REAL array, dimension (LDA,NA) */ /* The NA x NA matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of A. It must be at least NA. */ /* D1 (input) REAL */ /* The 1,1 element in the diagonal matrix D. */ /* D2 (input) REAL */ /* The 2,2 element in the diagonal matrix D. Not used if NW=1. */ /* B (input) REAL array, dimension (LDB,NW) */ /* The NA x NW matrix B (right-hand side). If NW=2 ("w" is */ /* complex), column 1 contains the real part of B and column 2 */ /* contains the imaginary part. */ /* LDB (input) INTEGER */ /* The leading dimension of B. It must be at least NA. */ /* WR (input) REAL */ /* The real part of the scalar "w". */ /* WI (input) REAL */ /* The imaginary part of the scalar "w". Not used if NW=1. */ /* X (output) REAL array, dimension (LDX,NW) */ /* The NA x NW matrix X (unknowns), as computed by SLALN2. */ /* If NW=2 ("w" is complex), on exit, column 1 will contain */ /* the real part of X and column 2 will contain the imaginary */ /* part. */ /* LDX (input) INTEGER */ /* The leading dimension of X. It must be at least NA. */ /* SCALE (output) REAL */ /* The scale factor that B must be multiplied by to insure */ /* that overflow does not occur when computing X. Thus, */ /* (ca A - w D) X will be SCALE*B, not B (ignoring */ /* perturbations of A.) It will be at most 1. */ /* XNORM (output) REAL */ /* The infinity-norm of X, when X is regarded as an NA x NW */ /* real matrix. */ /* INFO (output) INTEGER */ /* An error flag. It will be set to zero if no error occurs, */ /* a negative number if an argument is in error, or a positive */ /* number if ca A - w D had to be perturbed. */ /* The possible values are: */ /* = 0: No error occurred, and (ca A - w D) did not have to be */ /* perturbed. */ /* = 1: (ca A - w D) had to be perturbed to make its smallest */ /* (or only) singular value greater than SMIN. */ /* NOTE: In the interests of speed, this routine does not */ /* check the inputs for errors. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Equivalences .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Compute BIGNUM */ smlnum = 2.f * slamch_("Safe minimum"); bignum = 1.f / smlnum; smini = dmax(*smin,smlnum); /* Don't check for input errors */ *info = 0; /* Standard Initializations */ *scale = 1.f; if (*na == 1) { /* 1 x 1 (i.e., scalar) system C X = B */ if (*nw == 1) { /* Real 1x1 system. */ /* C = ca A - w D */ csr = *ca * a[a_dim1 + 1] - *wr * *d1; cnorm = dabs(csr); /* If | C | < SMINI, use C = SMINI */ if (cnorm < smini) { csr = smini; cnorm = smini; *info = 1; } /* Check scaling for X = B / C */ bnorm = (r__1 = b[b_dim1 + 1], dabs(r__1)); if (cnorm < 1.f && bnorm > 1.f) { if (bnorm > bignum * cnorm) { *scale = 1.f / bnorm; } } /* Compute X */ x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr; *xnorm = (r__1 = x[x_dim1 + 1], dabs(r__1)); } else { /* Complex 1x1 system (w is complex) */ /* C = ca A - w D */ csr = *ca * a[a_dim1 + 1] - *wr * *d1; csi = -(*wi) * *d1; cnorm = dabs(csr) + dabs(csi); /* If | C | < SMINI, use C = SMINI */ if (cnorm < smini) { csr = smini; csi = 0.f; cnorm = smini; *info = 1; } /* Check scaling for X = B / C */ bnorm = (r__1 = b[b_dim1 + 1], dabs(r__1)) + (r__2 = b[(b_dim1 << 1) + 1], dabs(r__2)); if (cnorm < 1.f && bnorm > 1.f) { if (bnorm > bignum * cnorm) { *scale = 1.f / bnorm; } } /* Compute X */ r__1 = *scale * b[b_dim1 + 1]; r__2 = *scale * b[(b_dim1 << 1) + 1]; sladiv_(&r__1, &r__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1) + 1]); *xnorm = (r__1 = x[x_dim1 + 1], dabs(r__1)) + (r__2 = x[(x_dim1 << 1) + 1], dabs(r__2)); } } else { /* 2x2 System */ /* Compute the real part of C = ca A - w D (or ca A' - w D ) */ cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1; cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2; if (*ltrans) { cr[2] = *ca * a[a_dim1 + 2]; cr[1] = *ca * a[(a_dim1 << 1) + 1]; } else { cr[1] = *ca * a[a_dim1 + 2]; cr[2] = *ca * a[(a_dim1 << 1) + 1]; } if (*nw == 1) { /* Real 2x2 system (w is real) */ /* Find the largest element in C */ cmax = 0.f; icmax = 0; for (j = 1; j <= 4; ++j) { if ((r__1 = crv[j - 1], dabs(r__1)) > cmax) { cmax = (r__1 = crv[j - 1], dabs(r__1)); icmax = j; } /* L10: */ } /* If norm(C) < SMINI, use SMINI*identity. */ if (cmax < smini) { /* Computing MAX */ r__3 = (r__1 = b[b_dim1 + 1], dabs(r__1)), r__4 = (r__2 = b[ b_dim1 + 2], dabs(r__2)); bnorm = dmax(r__3,r__4); if (smini < 1.f && bnorm > 1.f) { if (bnorm > bignum * smini) { *scale = 1.f / bnorm; } } temp = *scale / smini; x[x_dim1 + 1] = temp * b[b_dim1 + 1]; x[x_dim1 + 2] = temp * b[b_dim1 + 2]; *xnorm = temp * bnorm; *info = 1; return 0; } /* Gaussian elimination with complete pivoting. */ ur11 = crv[icmax - 1]; cr21 = crv[ipivot[(icmax << 2) - 3] - 1]; ur12 = crv[ipivot[(icmax << 2) - 2] - 1]; cr22 = crv[ipivot[(icmax << 2) - 1] - 1]; ur11r = 1.f / ur11; lr21 = ur11r * cr21; ur22 = cr22 - ur12 * lr21; /* If smaller pivot < SMINI, use SMINI */ if (dabs(ur22) < smini) { ur22 = smini; *info = 1; } if (rswap[icmax - 1]) { br1 = b[b_dim1 + 2]; br2 = b[b_dim1 + 1]; } else { br1 = b[b_dim1 + 1]; br2 = b[b_dim1 + 2]; } br2 -= lr21 * br1; /* Computing MAX */ r__2 = (r__1 = br1 * (ur22 * ur11r), dabs(r__1)), r__3 = dabs(br2) ; bbnd = dmax(r__2,r__3); if (bbnd > 1.f && dabs(ur22) < 1.f) { if (bbnd >= bignum * dabs(ur22)) { *scale = 1.f / bbnd; } } xr2 = br2 * *scale / ur22; xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12); if (cswap[icmax - 1]) { x[x_dim1 + 1] = xr2; x[x_dim1 + 2] = xr1; } else { x[x_dim1 + 1] = xr1; x[x_dim1 + 2] = xr2; } /* Computing MAX */ r__1 = dabs(xr1), r__2 = dabs(xr2); *xnorm = dmax(r__1,r__2); /* Further scaling if norm(A) norm(X) > overflow */ if (*xnorm > 1.f && cmax > 1.f) { if (*xnorm > bignum / cmax) { temp = cmax / bignum; x[x_dim1 + 1] = temp * x[x_dim1 + 1]; x[x_dim1 + 2] = temp * x[x_dim1 + 2]; *xnorm = temp * *xnorm; *scale = temp * *scale; } } } else { /* Complex 2x2 system (w is complex) */ /* Find the largest element in C */ ci[0] = -(*wi) * *d1; ci[1] = 0.f; ci[2] = 0.f; ci[3] = -(*wi) * *d2; cmax = 0.f; icmax = 0; for (j = 1; j <= 4; ++j) { if ((r__1 = crv[j - 1], dabs(r__1)) + (r__2 = civ[j - 1], dabs(r__2)) > cmax) { cmax = (r__1 = crv[j - 1], dabs(r__1)) + (r__2 = civ[j - 1], dabs(r__2)); icmax = j; } /* L20: */ } /* If norm(C) < SMINI, use SMINI*identity. */ if (cmax < smini) { /* Computing MAX */ r__5 = (r__1 = b[b_dim1 + 1], dabs(r__1)) + (r__2 = b[(b_dim1 << 1) + 1], dabs(r__2)), r__6 = (r__3 = b[b_dim1 + 2], dabs(r__3)) + (r__4 = b[(b_dim1 << 1) + 2], dabs( r__4)); bnorm = dmax(r__5,r__6); if (smini < 1.f && bnorm > 1.f) { if (bnorm > bignum * smini) { *scale = 1.f / bnorm; } } temp = *scale / smini; x[x_dim1 + 1] = temp * b[b_dim1 + 1]; x[x_dim1 + 2] = temp * b[b_dim1 + 2]; x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1]; x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2]; *xnorm = temp * bnorm; *info = 1; return 0; } /* Gaussian elimination with complete pivoting. */ ur11 = crv[icmax - 1]; ui11 = civ[icmax - 1]; cr21 = crv[ipivot[(icmax << 2) - 3] - 1]; ci21 = civ[ipivot[(icmax << 2) - 3] - 1]; ur12 = crv[ipivot[(icmax << 2) - 2] - 1]; ui12 = civ[ipivot[(icmax << 2) - 2] - 1]; cr22 = crv[ipivot[(icmax << 2) - 1] - 1]; ci22 = civ[ipivot[(icmax << 2) - 1] - 1]; if (icmax == 1 || icmax == 4) { /* Code when off-diagonals of pivoted C are real */ if (dabs(ur11) > dabs(ui11)) { temp = ui11 / ur11; /* Computing 2nd power */ r__1 = temp; ur11r = 1.f / (ur11 * (r__1 * r__1 + 1.f)); ui11r = -temp * ur11r; } else { temp = ur11 / ui11; /* Computing 2nd power */ r__1 = temp; ui11r = -1.f / (ui11 * (r__1 * r__1 + 1.f)); ur11r = -temp * ui11r; } lr21 = cr21 * ur11r; li21 = cr21 * ui11r; ur12s = ur12 * ur11r; ui12s = ur12 * ui11r; ur22 = cr22 - ur12 * lr21; ui22 = ci22 - ur12 * li21; } else { /* Code when diagonals of pivoted C are real */ ur11r = 1.f / ur11; ui11r = 0.f; lr21 = cr21 * ur11r; li21 = ci21 * ur11r; ur12s = ur12 * ur11r; ui12s = ui12 * ur11r; ur22 = cr22 - ur12 * lr21 + ui12 * li21; ui22 = -ur12 * li21 - ui12 * lr21; } u22abs = dabs(ur22) + dabs(ui22); /* If smaller pivot < SMINI, use SMINI */ if (u22abs < smini) { ur22 = smini; ui22 = 0.f; *info = 1; } if (rswap[icmax - 1]) { br2 = b[b_dim1 + 1]; br1 = b[b_dim1 + 2]; bi2 = b[(b_dim1 << 1) + 1]; bi1 = b[(b_dim1 << 1) + 2]; } else { br1 = b[b_dim1 + 1]; br2 = b[b_dim1 + 2]; bi1 = b[(b_dim1 << 1) + 1]; bi2 = b[(b_dim1 << 1) + 2]; } br2 = br2 - lr21 * br1 + li21 * bi1; bi2 = bi2 - li21 * br1 - lr21 * bi1; /* Computing MAX */ r__1 = (dabs(br1) + dabs(bi1)) * (u22abs * (dabs(ur11r) + dabs( ui11r))), r__2 = dabs(br2) + dabs(bi2); bbnd = dmax(r__1,r__2); if (bbnd > 1.f && u22abs < 1.f) { if (bbnd >= bignum * u22abs) { *scale = 1.f / bbnd; br1 = *scale * br1; bi1 = *scale * bi1; br2 = *scale * br2; bi2 = *scale * bi2; } } sladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2); xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2; xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2; if (cswap[icmax - 1]) { x[x_dim1 + 1] = xr2; x[x_dim1 + 2] = xr1; x[(x_dim1 << 1) + 1] = xi2; x[(x_dim1 << 1) + 2] = xi1; } else { x[x_dim1 + 1] = xr1; x[x_dim1 + 2] = xr2; x[(x_dim1 << 1) + 1] = xi1; x[(x_dim1 << 1) + 2] = xi2; } /* Computing MAX */ r__1 = dabs(xr1) + dabs(xi1), r__2 = dabs(xr2) + dabs(xi2); *xnorm = dmax(r__1,r__2); /* Further scaling if norm(A) norm(X) > overflow */ if (*xnorm > 1.f && cmax > 1.f) { if (*xnorm > bignum / cmax) { temp = cmax / bignum; x[x_dim1 + 1] = temp * x[x_dim1 + 1]; x[x_dim1 + 2] = temp * x[x_dim1 + 2]; x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1]; x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2]; *xnorm = temp * *xnorm; *scale = temp * *scale; } } } } return 0; /* End of SLALN2 */ } /* slaln2_ */ #undef crv #undef civ #undef cr #undef ci