/* dlatrz.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int dlatrz_(integer *m, integer *n, integer *l, doublereal * a, integer *lda, doublereal *tau, doublereal *work) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__; extern /* Subroutine */ int dlarz_(char *, integer *, integer *, integer * , doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *), dlarfp_(integer *, doublereal *, doublereal *, integer *, doublereal *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix */ /* [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means */ /* of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal */ /* matrix and, R and A1 are M-by-M upper triangular matrices. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* L (input) INTEGER */ /* The number of columns of the matrix A containing the */ /* meaningful part of the Householder vectors. N-M >= L >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the leading M-by-N upper trapezoidal part of the */ /* array A must contain the matrix to be factorized. */ /* On exit, the leading M-by-M upper triangular part of A */ /* contains the upper triangular matrix R, and elements N-L+1 to */ /* N of the first M rows of A, with the array TAU, represent the */ /* orthogonal matrix Z as a product of M elementary reflectors. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) DOUBLE PRECISION array, dimension (M) */ /* The scalar factors of the elementary reflectors. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (M) */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ /* The factorization is obtained by Householder's method. The kth */ /* transformation matrix, Z( k ), which is used to introduce zeros into */ /* the ( m - k + 1 )th row of A, is given in the form */ /* Z( k ) = ( I 0 ), */ /* ( 0 T( k ) ) */ /* where */ /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ /* ( 0 ) */ /* ( z( k ) ) */ /* tau is a scalar and z( k ) is an l element vector. tau and z( k ) */ /* are chosen to annihilate the elements of the kth row of A2. */ /* The scalar tau is returned in the kth element of TAU and the vector */ /* u( k ) in the kth row of A2, such that the elements of z( k ) are */ /* in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in */ /* the upper triangular part of A1. */ /* Z is given by */ /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Quick return if possible */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ if (*m == 0) { return 0; } else if (*m == *n) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tau[i__] = 0.; /* L10: */ } return 0; } for (i__ = *m; i__ >= 1; --i__) { /* Generate elementary reflector H(i) to annihilate */ /* [ A(i,i) A(i,n-l+1:n) ] */ i__1 = *l + 1; dlarfp_(&i__1, &a[i__ + i__ * a_dim1], &a[i__ + (*n - *l + 1) * a_dim1], lda, &tau[i__]); /* Apply H(i) to A(1:i-1,i:n) from the right */ i__1 = i__ - 1; i__2 = *n - i__ + 1; dlarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1], lda, &tau[i__], &a[i__ * a_dim1 + 1], lda, &work[1]); /* L20: */ } return 0; /* End of DLATRZ */ } /* dlatrz_ */