/* dlantr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; doublereal dlantr_(char *norm, char *uplo, char *diag, integer *m, integer *n, doublereal *a, integer *lda, doublereal *work) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; doublereal ret_val, d__1, d__2, d__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j; doublereal sum, scale; logical udiag; extern logical lsame_(char *, char *); doublereal value; extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, doublereal *, doublereal *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLANTR returns the value of the one norm, or the Frobenius norm, or */ /* the infinity norm, or the element of largest absolute value of a */ /* trapezoidal or triangular matrix A. */ /* Description */ /* =========== */ /* DLANTR returns the value */ /* DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ /* ( */ /* ( norm1(A), NORM = '1', 'O' or 'o' */ /* ( */ /* ( normI(A), NORM = 'I' or 'i' */ /* ( */ /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ /* where norm1 denotes the one norm of a matrix (maximum column sum), */ /* normI denotes the infinity norm of a matrix (maximum row sum) and */ /* normF denotes the Frobenius norm of a matrix (square root of sum of */ /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies the value to be returned in DLANTR as described */ /* above. */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower trapezoidal. */ /* = 'U': Upper trapezoidal */ /* = 'L': Lower trapezoidal */ /* Note that A is triangular instead of trapezoidal if M = N. */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A has unit diagonal. */ /* = 'N': Non-unit diagonal */ /* = 'U': Unit diagonal */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0, and if */ /* UPLO = 'U', M <= N. When M = 0, DLANTR is set to zero. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0, and if */ /* UPLO = 'L', N <= M. When N = 0, DLANTR is set to zero. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The trapezoidal matrix A (A is triangular if M = N). */ /* If UPLO = 'U', the leading m by n upper trapezoidal part of */ /* the array A contains the upper trapezoidal matrix, and the */ /* strictly lower triangular part of A is not referenced. */ /* If UPLO = 'L', the leading m by n lower trapezoidal part of */ /* the array A contains the lower trapezoidal matrix, and the */ /* strictly upper triangular part of A is not referenced. Note */ /* that when DIAG = 'U', the diagonal elements of A are not */ /* referenced and are assumed to be one. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(M,1). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */ /* where LWORK >= M when NORM = 'I'; otherwise, WORK is not */ /* referenced. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; /* Function Body */ if (min(*m,*n) == 0) { value = 0.; } else if (lsame_(norm, "M")) { /* Find max(abs(A(i,j))). */ if (lsame_(diag, "U")) { value = 1.; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__3 = *m, i__4 = j - 1; i__2 = min(i__3,i__4); for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs( d__1)); value = max(d__2,d__3); /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs( d__1)); value = max(d__2,d__3); /* L30: */ } /* L40: */ } } } else { value = 0.; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(*m,j); for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs( d__1)); value = max(d__2,d__3); /* L50: */ } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs( d__1)); value = max(d__2,d__3); /* L70: */ } /* L80: */ } } } } else if (lsame_(norm, "O") || *(unsigned char *) norm == '1') { /* Find norm1(A). */ value = 0.; udiag = lsame_(diag, "U"); if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (udiag && j <= *m) { sum = 1.; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { sum += (d__1 = a[i__ + j * a_dim1], abs(d__1)); /* L90: */ } } else { sum = 0.; i__2 = min(*m,j); for (i__ = 1; i__ <= i__2; ++i__) { sum += (d__1 = a[i__ + j * a_dim1], abs(d__1)); /* L100: */ } } value = max(value,sum); /* L110: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (udiag) { sum = 1.; i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { sum += (d__1 = a[i__ + j * a_dim1], abs(d__1)); /* L120: */ } } else { sum = 0.; i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { sum += (d__1 = a[i__ + j * a_dim1], abs(d__1)); /* L130: */ } } value = max(value,sum); /* L140: */ } } } else if (lsame_(norm, "I")) { /* Find normI(A). */ if (lsame_(uplo, "U")) { if (lsame_(diag, "U")) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 1.; /* L150: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__3 = *m, i__4 = j - 1; i__2 = min(i__3,i__4); for (i__ = 1; i__ <= i__2; ++i__) { work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1)); /* L160: */ } /* L170: */ } } else { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.; /* L180: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(*m,j); for (i__ = 1; i__ <= i__2; ++i__) { work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1)); /* L190: */ } /* L200: */ } } } else { if (lsame_(diag, "U")) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 1.; /* L210: */ } i__1 = *m; for (i__ = *n + 1; i__ <= i__1; ++i__) { work[i__] = 0.; /* L220: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1)); /* L230: */ } /* L240: */ } } else { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.; /* L250: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1)); /* L260: */ } /* L270: */ } } } value = 0.; i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ d__1 = value, d__2 = work[i__]; value = max(d__1,d__2); /* L280: */ } } else if (lsame_(norm, "F") || lsame_(norm, "E")) { /* Find normF(A). */ if (lsame_(uplo, "U")) { if (lsame_(diag, "U")) { scale = 1.; sum = (doublereal) min(*m,*n); i__1 = *n; for (j = 2; j <= i__1; ++j) { /* Computing MIN */ i__3 = *m, i__4 = j - 1; i__2 = min(i__3,i__4); dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum); /* L290: */ } } else { scale = 0.; sum = 1.; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(*m,j); dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum); /* L300: */ } } } else { if (lsame_(diag, "U")) { scale = 1.; sum = (doublereal) min(*m,*n); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m - j; /* Computing MIN */ i__3 = *m, i__4 = j + 1; dlassq_(&i__2, &a[min(i__3, i__4)+ j * a_dim1], &c__1, & scale, &sum); /* L310: */ } } else { scale = 0.; sum = 1.; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m - j + 1; dlassq_(&i__2, &a[j + j * a_dim1], &c__1, &scale, &sum); /* L320: */ } } } value = scale * sqrt(sum); } ret_val = value; return ret_val; /* End of DLANTR */ } /* dlantr_ */