/* dgtsv.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int dgtsv_(integer *n, integer *nrhs, doublereal *dl, doublereal *d__, doublereal *du, doublereal *b, integer *ldb, integer *info) { /* System generated locals */ integer b_dim1, b_offset, i__1, i__2; doublereal d__1, d__2; /* Local variables */ integer i__, j; doublereal fact, temp; extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGTSV solves the equation */ /* A*X = B, */ /* where A is an n by n tridiagonal matrix, by Gaussian elimination with */ /* partial pivoting. */ /* Note that the equation A'*X = B may be solved by interchanging the */ /* order of the arguments DU and DL. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrix B. NRHS >= 0. */ /* DL (input/output) DOUBLE PRECISION array, dimension (N-1) */ /* On entry, DL must contain the (n-1) sub-diagonal elements of */ /* A. */ /* On exit, DL is overwritten by the (n-2) elements of the */ /* second super-diagonal of the upper triangular matrix U from */ /* the LU factorization of A, in DL(1), ..., DL(n-2). */ /* D (input/output) DOUBLE PRECISION array, dimension (N) */ /* On entry, D must contain the diagonal elements of A. */ /* On exit, D is overwritten by the n diagonal elements of U. */ /* DU (input/output) DOUBLE PRECISION array, dimension (N-1) */ /* On entry, DU must contain the (n-1) super-diagonal elements */ /* of A. */ /* On exit, DU is overwritten by the (n-1) elements of the first */ /* super-diagonal of U. */ /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* On entry, the N by NRHS matrix of right hand side matrix B. */ /* On exit, if INFO = 0, the N by NRHS solution matrix X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, U(i,i) is exactly zero, and the solution */ /* has not been computed. The factorization has not been */ /* completed unless i = N. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --dl; --d__; --du; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*nrhs < 0) { *info = -2; } else if (*ldb < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("DGTSV ", &i__1); return 0; } if (*n == 0) { return 0; } if (*nrhs == 1) { i__1 = *n - 2; for (i__ = 1; i__ <= i__1; ++i__) { if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) { /* No row interchange required */ if (d__[i__] != 0.) { fact = dl[i__] / d__[i__]; d__[i__ + 1] -= fact * du[i__]; b[i__ + 1 + b_dim1] -= fact * b[i__ + b_dim1]; } else { *info = i__; return 0; } dl[i__] = 0.; } else { /* Interchange rows I and I+1 */ fact = d__[i__] / dl[i__]; d__[i__] = dl[i__]; temp = d__[i__ + 1]; d__[i__ + 1] = du[i__] - fact * temp; dl[i__] = du[i__ + 1]; du[i__ + 1] = -fact * dl[i__]; du[i__] = temp; temp = b[i__ + b_dim1]; b[i__ + b_dim1] = b[i__ + 1 + b_dim1]; b[i__ + 1 + b_dim1] = temp - fact * b[i__ + 1 + b_dim1]; } /* L10: */ } if (*n > 1) { i__ = *n - 1; if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) { if (d__[i__] != 0.) { fact = dl[i__] / d__[i__]; d__[i__ + 1] -= fact * du[i__]; b[i__ + 1 + b_dim1] -= fact * b[i__ + b_dim1]; } else { *info = i__; return 0; } } else { fact = d__[i__] / dl[i__]; d__[i__] = dl[i__]; temp = d__[i__ + 1]; d__[i__ + 1] = du[i__] - fact * temp; du[i__] = temp; temp = b[i__ + b_dim1]; b[i__ + b_dim1] = b[i__ + 1 + b_dim1]; b[i__ + 1 + b_dim1] = temp - fact * b[i__ + 1 + b_dim1]; } } if (d__[*n] == 0.) { *info = *n; return 0; } } else { i__1 = *n - 2; for (i__ = 1; i__ <= i__1; ++i__) { if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) { /* No row interchange required */ if (d__[i__] != 0.) { fact = dl[i__] / d__[i__]; d__[i__ + 1] -= fact * du[i__]; i__2 = *nrhs; for (j = 1; j <= i__2; ++j) { b[i__ + 1 + j * b_dim1] -= fact * b[i__ + j * b_dim1]; /* L20: */ } } else { *info = i__; return 0; } dl[i__] = 0.; } else { /* Interchange rows I and I+1 */ fact = d__[i__] / dl[i__]; d__[i__] = dl[i__]; temp = d__[i__ + 1]; d__[i__ + 1] = du[i__] - fact * temp; dl[i__] = du[i__ + 1]; du[i__ + 1] = -fact * dl[i__]; du[i__] = temp; i__2 = *nrhs; for (j = 1; j <= i__2; ++j) { temp = b[i__ + j * b_dim1]; b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1]; b[i__ + 1 + j * b_dim1] = temp - fact * b[i__ + 1 + j * b_dim1]; /* L30: */ } } /* L40: */ } if (*n > 1) { i__ = *n - 1; if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) { if (d__[i__] != 0.) { fact = dl[i__] / d__[i__]; d__[i__ + 1] -= fact * du[i__]; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { b[i__ + 1 + j * b_dim1] -= fact * b[i__ + j * b_dim1]; /* L50: */ } } else { *info = i__; return 0; } } else { fact = d__[i__] / dl[i__]; d__[i__] = dl[i__]; temp = d__[i__ + 1]; d__[i__ + 1] = du[i__] - fact * temp; du[i__] = temp; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { temp = b[i__ + j * b_dim1]; b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1]; b[i__ + 1 + j * b_dim1] = temp - fact * b[i__ + 1 + j * b_dim1]; /* L60: */ } } } if (d__[*n] == 0.) { *info = *n; return 0; } } /* Back solve with the matrix U from the factorization. */ if (*nrhs <= 2) { j = 1; L70: b[*n + j * b_dim1] /= d__[*n]; if (*n > 1) { b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] * b[ *n + j * b_dim1]) / d__[*n - 1]; } for (i__ = *n - 2; i__ >= 1; --i__) { b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ + 1 + j * b_dim1] - dl[i__] * b[i__ + 2 + j * b_dim1]) / d__[ i__]; /* L80: */ } if (j < *nrhs) { ++j; goto L70; } } else { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { b[*n + j * b_dim1] /= d__[*n]; if (*n > 1) { b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] * b[*n + j * b_dim1]) / d__[*n - 1]; } for (i__ = *n - 2; i__ >= 1; --i__) { b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ + 1 + j * b_dim1] - dl[i__] * b[i__ + 2 + j * b_dim1]) / d__[i__]; /* L90: */ } /* L100: */ } } return 0; /* End of DGTSV */ } /* dgtsv_ */