/* cunml2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int cunml2_(char *side, char *trans, integer *m, integer *n, integer *k, complex *a, integer *lda, complex *tau, complex *c__, integer *ldc, complex *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3; complex q__1; /* Builtin functions */ void r_cnjg(complex *, complex *); /* Local variables */ integer i__, i1, i2, i3, ic, jc, mi, ni, nq; complex aii; logical left; complex taui; extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * , integer *, complex *, complex *, integer *, complex *); extern logical lsame_(char *, char *); extern /* Subroutine */ int clacgv_(integer *, complex *, integer *), xerbla_(char *, integer *); logical notran; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CUNML2 overwrites the general complex m-by-n matrix C with */ /* Q * C if SIDE = 'L' and TRANS = 'N', or */ /* Q'* C if SIDE = 'L' and TRANS = 'C', or */ /* C * Q if SIDE = 'R' and TRANS = 'N', or */ /* C * Q' if SIDE = 'R' and TRANS = 'C', */ /* where Q is a complex unitary matrix defined as the product of k */ /* elementary reflectors */ /* Q = H(k)' . . . H(2)' H(1)' */ /* as returned by CGELQF. Q is of order m if SIDE = 'L' and of order n */ /* if SIDE = 'R'. */ /* Arguments */ /* ========= */ /* SIDE (input) CHARACTER*1 */ /* = 'L': apply Q or Q' from the Left */ /* = 'R': apply Q or Q' from the Right */ /* TRANS (input) CHARACTER*1 */ /* = 'N': apply Q (No transpose) */ /* = 'C': apply Q' (Conjugate transpose) */ /* M (input) INTEGER */ /* The number of rows of the matrix C. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix C. N >= 0. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines */ /* the matrix Q. */ /* If SIDE = 'L', M >= K >= 0; */ /* if SIDE = 'R', N >= K >= 0. */ /* A (input) COMPLEX array, dimension */ /* (LDA,M) if SIDE = 'L', */ /* (LDA,N) if SIDE = 'R' */ /* The i-th row must contain the vector which defines the */ /* elementary reflector H(i), for i = 1,2,...,k, as returned by */ /* CGELQF in the first k rows of its array argument A. */ /* A is modified by the routine but restored on exit. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,K). */ /* TAU (input) COMPLEX array, dimension (K) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by CGELQF. */ /* C (input/output) COMPLEX array, dimension (LDC,N) */ /* On entry, the m-by-n matrix C. */ /* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */ /* LDC (input) INTEGER */ /* The leading dimension of the array C. LDC >= max(1,M). */ /* WORK (workspace) COMPLEX array, dimension */ /* (N) if SIDE = 'L', */ /* (M) if SIDE = 'R' */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; left = lsame_(side, "L"); notran = lsame_(trans, "N"); /* NQ is the order of Q */ if (left) { nq = *m; } else { nq = *n; } if (! left && ! lsame_(side, "R")) { *info = -1; } else if (! notran && ! lsame_(trans, "C")) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*k < 0 || *k > nq) { *info = -5; } else if (*lda < max(1,*k)) { *info = -7; } else if (*ldc < max(1,*m)) { *info = -10; } if (*info != 0) { i__1 = -(*info); xerbla_("CUNML2", &i__1); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0 || *k == 0) { return 0; } if (left && notran || ! left && ! notran) { i1 = 1; i2 = *k; i3 = 1; } else { i1 = *k; i2 = 1; i3 = -1; } if (left) { ni = *n; jc = 1; } else { mi = *m; ic = 1; } i__1 = i2; i__2 = i3; for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { if (left) { /* H(i) or H(i)' is applied to C(i:m,1:n) */ mi = *m - i__ + 1; ic = i__; } else { /* H(i) or H(i)' is applied to C(1:m,i:n) */ ni = *n - i__ + 1; jc = i__; } /* Apply H(i) or H(i)' */ if (notran) { r_cnjg(&q__1, &tau[i__]); taui.r = q__1.r, taui.i = q__1.i; } else { i__3 = i__; taui.r = tau[i__3].r, taui.i = tau[i__3].i; } if (i__ < nq) { i__3 = nq - i__; clacgv_(&i__3, &a[i__ + (i__ + 1) * a_dim1], lda); } i__3 = i__ + i__ * a_dim1; aii.r = a[i__3].r, aii.i = a[i__3].i; i__3 = i__ + i__ * a_dim1; a[i__3].r = 1.f, a[i__3].i = 0.f; clarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &taui, &c__[ic + jc * c_dim1], ldc, &work[1]); i__3 = i__ + i__ * a_dim1; a[i__3].r = aii.r, a[i__3].i = aii.i; if (i__ < nq) { i__3 = nq - i__; clacgv_(&i__3, &a[i__ + (i__ + 1) * a_dim1], lda); } /* L10: */ } return 0; /* End of CUNML2 */ } /* cunml2_ */