/* cgesc2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static complex c_b13 = {1.f,0.f}; static integer c_n1 = -1; /* Subroutine */ int cgesc2_(integer *n, complex *a, integer *lda, complex * rhs, integer *ipiv, integer *jpiv, real *scale) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1; complex q__1, q__2, q__3; /* Builtin functions */ double c_abs(complex *); void c_div(complex *, complex *, complex *); /* Local variables */ integer i__, j; real eps; complex temp; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *), slabad_(real *, real *); extern integer icamax_(integer *, complex *, integer *); extern doublereal slamch_(char *); real bignum; extern /* Subroutine */ int claswp_(integer *, complex *, integer *, integer *, integer *, integer *, integer *); real smlnum; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGESC2 solves a system of linear equations */ /* A * X = scale* RHS */ /* with a general N-by-N matrix A using the LU factorization with */ /* complete pivoting computed by CGETC2. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of columns of the matrix A. */ /* A (input) COMPLEX array, dimension (LDA, N) */ /* On entry, the LU part of the factorization of the n-by-n */ /* matrix A computed by CGETC2: A = P * L * U * Q */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1, N). */ /* RHS (input/output) COMPLEX array, dimension N. */ /* On entry, the right hand side vector b. */ /* On exit, the solution vector X. */ /* IPIV (input) INTEGER array, dimension (N). */ /* The pivot indices; for 1 <= i <= N, row i of the */ /* matrix has been interchanged with row IPIV(i). */ /* JPIV (input) INTEGER array, dimension (N). */ /* The pivot indices; for 1 <= j <= N, column j of the */ /* matrix has been interchanged with column JPIV(j). */ /* SCALE (output) REAL */ /* On exit, SCALE contains the scale factor. SCALE is chosen */ /* 0 <= SCALE <= 1 to prevent owerflow in the solution. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ /* Umea University, S-901 87 Umea, Sweden. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Set constant to control overflow */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --rhs; --ipiv; --jpiv; /* Function Body */ eps = slamch_("P"); smlnum = slamch_("S") / eps; bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Apply permutations IPIV to RHS */ i__1 = *n - 1; claswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &ipiv[1], &c__1); /* Solve for L part */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { i__3 = j; i__4 = j; i__5 = j + i__ * a_dim1; i__6 = i__; q__2.r = a[i__5].r * rhs[i__6].r - a[i__5].i * rhs[i__6].i, q__2.i = a[i__5].r * rhs[i__6].i + a[i__5].i * rhs[i__6] .r; q__1.r = rhs[i__4].r - q__2.r, q__1.i = rhs[i__4].i - q__2.i; rhs[i__3].r = q__1.r, rhs[i__3].i = q__1.i; /* L10: */ } /* L20: */ } /* Solve for U part */ *scale = 1.f; /* Check for scaling */ i__ = icamax_(n, &rhs[1], &c__1); if (smlnum * 2.f * c_abs(&rhs[i__]) > c_abs(&a[*n + *n * a_dim1])) { r__1 = c_abs(&rhs[i__]); q__1.r = .5f / r__1, q__1.i = 0.f / r__1; temp.r = q__1.r, temp.i = q__1.i; cscal_(n, &temp, &rhs[1], &c__1); *scale *= temp.r; } for (i__ = *n; i__ >= 1; --i__) { c_div(&q__1, &c_b13, &a[i__ + i__ * a_dim1]); temp.r = q__1.r, temp.i = q__1.i; i__1 = i__; i__2 = i__; q__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, q__1.i = rhs[ i__2].r * temp.i + rhs[i__2].i * temp.r; rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i; i__1 = *n; for (j = i__ + 1; j <= i__1; ++j) { i__2 = i__; i__3 = i__; i__4 = j; i__5 = i__ + j * a_dim1; q__3.r = a[i__5].r * temp.r - a[i__5].i * temp.i, q__3.i = a[i__5] .r * temp.i + a[i__5].i * temp.r; q__2.r = rhs[i__4].r * q__3.r - rhs[i__4].i * q__3.i, q__2.i = rhs[i__4].r * q__3.i + rhs[i__4].i * q__3.r; q__1.r = rhs[i__3].r - q__2.r, q__1.i = rhs[i__3].i - q__2.i; rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i; /* L30: */ } /* L40: */ } /* Apply permutations JPIV to the solution (RHS) */ i__1 = *n - 1; claswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &jpiv[1], &c_n1); return 0; /* End of CGESC2 */ } /* cgesc2_ */