/* cgeev.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c__0 = 0; static integer c_n1 = -1; /* Subroutine */ int cgeev_(char *jobvl, char *jobvr, integer *n, complex *a, integer *lda, complex *w, complex *vl, integer *ldvl, complex *vr, integer *ldvr, complex *work, integer *lwork, real *rwork, integer * info) { /* System generated locals */ integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3; real r__1, r__2; complex q__1, q__2; /* Builtin functions */ double sqrt(doublereal), r_imag(complex *); void r_cnjg(complex *, complex *); /* Local variables */ integer i__, k, ihi; real scl; integer ilo; real dum[1], eps; complex tmp; integer ibal; char side[1]; real anrm; integer ierr, itau, iwrk, nout; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *); extern logical lsame_(char *, char *); extern doublereal scnrm2_(integer *, complex *, integer *); extern /* Subroutine */ int cgebak_(char *, char *, integer *, integer *, integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *, integer *, integer *, real *, integer *), slabad_(real *, real *); logical scalea; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); real cscale; extern /* Subroutine */ int cgehrd_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); logical select[1]; real bignum; extern integer isamax_(integer *, real *, integer *); extern /* Subroutine */ int chseqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), ctrevc_(char *, char *, logical *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, complex *, real *, integer *), cunghr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); integer minwrk, maxwrk; logical wantvl; real smlnum; integer hswork, irwork; logical lquery, wantvr; /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGEEV computes for an N-by-N complex nonsymmetric matrix A, the */ /* eigenvalues and, optionally, the left and/or right eigenvectors. */ /* The right eigenvector v(j) of A satisfies */ /* A * v(j) = lambda(j) * v(j) */ /* where lambda(j) is its eigenvalue. */ /* The left eigenvector u(j) of A satisfies */ /* u(j)**H * A = lambda(j) * u(j)**H */ /* where u(j)**H denotes the conjugate transpose of u(j). */ /* The computed eigenvectors are normalized to have Euclidean norm */ /* equal to 1 and largest component real. */ /* Arguments */ /* ========= */ /* JOBVL (input) CHARACTER*1 */ /* = 'N': left eigenvectors of A are not computed; */ /* = 'V': left eigenvectors of are computed. */ /* JOBVR (input) CHARACTER*1 */ /* = 'N': right eigenvectors of A are not computed; */ /* = 'V': right eigenvectors of A are computed. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the N-by-N matrix A. */ /* On exit, A has been overwritten. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* W (output) COMPLEX array, dimension (N) */ /* W contains the computed eigenvalues. */ /* VL (output) COMPLEX array, dimension (LDVL,N) */ /* If JOBVL = 'V', the left eigenvectors u(j) are stored one */ /* after another in the columns of VL, in the same order */ /* as their eigenvalues. */ /* If JOBVL = 'N', VL is not referenced. */ /* u(j) = VL(:,j), the j-th column of VL. */ /* LDVL (input) INTEGER */ /* The leading dimension of the array VL. LDVL >= 1; if */ /* JOBVL = 'V', LDVL >= N. */ /* VR (output) COMPLEX array, dimension (LDVR,N) */ /* If JOBVR = 'V', the right eigenvectors v(j) are stored one */ /* after another in the columns of VR, in the same order */ /* as their eigenvalues. */ /* If JOBVR = 'N', VR is not referenced. */ /* v(j) = VR(:,j), the j-th column of VR. */ /* LDVR (input) INTEGER */ /* The leading dimension of the array VR. LDVR >= 1; if */ /* JOBVR = 'V', LDVR >= N. */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,2*N). */ /* For good performance, LWORK must generally be larger. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* RWORK (workspace) REAL array, dimension (2*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, the QR algorithm failed to compute all the */ /* eigenvalues, and no eigenvectors have been computed; */ /* elements and i+1:N of W contain eigenvalues which have */ /* converged. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --work; --rwork; /* Function Body */ *info = 0; lquery = *lwork == -1; wantvl = lsame_(jobvl, "V"); wantvr = lsame_(jobvr, "V"); if (! wantvl && ! lsame_(jobvl, "N")) { *info = -1; } else if (! wantvr && ! lsame_(jobvr, "N")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldvl < 1 || wantvl && *ldvl < *n) { *info = -8; } else if (*ldvr < 1 || wantvr && *ldvr < *n) { *info = -10; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* CWorkspace refers to complex workspace, and RWorkspace to real */ /* workspace. NB refers to the optimal block size for the */ /* immediately following subroutine, as returned by ILAENV. */ /* HSWORK refers to the workspace preferred by CHSEQR, as */ /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */ /* the worst case.) */ if (*info == 0) { if (*n == 0) { minwrk = 1; maxwrk = 1; } else { maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, & c__0); minwrk = *n << 1; if (wantvl) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", " ", n, &c__1, n, &c_n1); maxwrk = max(i__1,i__2); chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[ vl_offset], ldvl, &work[1], &c_n1, info); } else if (wantvr) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", " ", n, &c__1, n, &c_n1); maxwrk = max(i__1,i__2); chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[ vr_offset], ldvr, &work[1], &c_n1, info); } else { chseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[ vr_offset], ldvr, &work[1], &c_n1, info); } hswork = work[1].r; /* Computing MAX */ i__1 = max(maxwrk,hswork); maxwrk = max(i__1,minwrk); } work[1].r = (real) maxwrk, work[1].i = 0.f; if (*lwork < minwrk && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGEEV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("P"); smlnum = slamch_("S"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", n, n, &a[a_offset], lda, dum); scalea = FALSE_; if (anrm > 0.f && anrm < smlnum) { scalea = TRUE_; cscale = smlnum; } else if (anrm > bignum) { scalea = TRUE_; cscale = bignum; } if (scalea) { clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & ierr); } /* Balance the matrix */ /* (CWorkspace: none) */ /* (RWorkspace: need N) */ ibal = 1; cgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr); /* Reduce to upper Hessenberg form */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: none) */ itau = 1; iwrk = itau + *n; i__1 = *lwork - iwrk + 1; cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &ierr); if (wantvl) { /* Want left eigenvectors */ /* Copy Householder vectors to VL */ *(unsigned char *)side = 'L'; clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl) ; /* Generate unitary matrix in VL */ /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwrk + 1; cunghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &i__1, &ierr); /* Perform QR iteration, accumulating Schur vectors in VL */ /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */ /* (RWorkspace: none) */ iwrk = itau; i__1 = *lwork - iwrk + 1; chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vl[ vl_offset], ldvl, &work[iwrk], &i__1, info); if (wantvr) { /* Want left and right eigenvectors */ /* Copy Schur vectors to VR */ *(unsigned char *)side = 'B'; clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr); } } else if (wantvr) { /* Want right eigenvectors */ /* Copy Householder vectors to VR */ *(unsigned char *)side = 'R'; clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr) ; /* Generate unitary matrix in VR */ /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwrk + 1; cunghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &i__1, &ierr); /* Perform QR iteration, accumulating Schur vectors in VR */ /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */ /* (RWorkspace: none) */ iwrk = itau; i__1 = *lwork - iwrk + 1; chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[ vr_offset], ldvr, &work[iwrk], &i__1, info); } else { /* Compute eigenvalues only */ /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */ /* (RWorkspace: none) */ iwrk = itau; i__1 = *lwork - iwrk + 1; chseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[ vr_offset], ldvr, &work[iwrk], &i__1, info); } /* If INFO > 0 from CHSEQR, then quit */ if (*info > 0) { goto L50; } if (wantvl || wantvr) { /* Compute left and/or right eigenvectors */ /* (CWorkspace: need 2*N) */ /* (RWorkspace: need 2*N) */ irwork = ibal + *n; ctrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[irwork], &ierr); } if (wantvl) { /* Undo balancing of left eigenvectors */ /* (CWorkspace: none) */ /* (RWorkspace: need N) */ cgebak_("B", "L", n, &ilo, &ihi, &rwork[ibal], n, &vl[vl_offset], ldvl, &ierr); /* Normalize left eigenvectors and make largest component real */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1); csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1); i__2 = *n; for (k = 1; k <= i__2; ++k) { i__3 = k + i__ * vl_dim1; /* Computing 2nd power */ r__1 = vl[i__3].r; /* Computing 2nd power */ r__2 = r_imag(&vl[k + i__ * vl_dim1]); rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2; /* L10: */ } k = isamax_(n, &rwork[irwork], &c__1); r_cnjg(&q__2, &vl[k + i__ * vl_dim1]); r__1 = sqrt(rwork[irwork + k - 1]); q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1; tmp.r = q__1.r, tmp.i = q__1.i; cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1); i__2 = k + i__ * vl_dim1; i__3 = k + i__ * vl_dim1; r__1 = vl[i__3].r; q__1.r = r__1, q__1.i = 0.f; vl[i__2].r = q__1.r, vl[i__2].i = q__1.i; /* L20: */ } } if (wantvr) { /* Undo balancing of right eigenvectors */ /* (CWorkspace: none) */ /* (RWorkspace: need N) */ cgebak_("B", "R", n, &ilo, &ihi, &rwork[ibal], n, &vr[vr_offset], ldvr, &ierr); /* Normalize right eigenvectors and make largest component real */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1); csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1); i__2 = *n; for (k = 1; k <= i__2; ++k) { i__3 = k + i__ * vr_dim1; /* Computing 2nd power */ r__1 = vr[i__3].r; /* Computing 2nd power */ r__2 = r_imag(&vr[k + i__ * vr_dim1]); rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2; /* L30: */ } k = isamax_(n, &rwork[irwork], &c__1); r_cnjg(&q__2, &vr[k + i__ * vr_dim1]); r__1 = sqrt(rwork[irwork + k - 1]); q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1; tmp.r = q__1.r, tmp.i = q__1.i; cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1); i__2 = k + i__ * vr_dim1; i__3 = k + i__ * vr_dim1; r__1 = vr[i__3].r; q__1.r = r__1, q__1.i = 0.f; vr[i__2].r = q__1.r, vr[i__2].i = q__1.i; /* L40: */ } } /* Undo scaling if necessary */ L50: if (scalea) { i__1 = *n - *info; /* Computing MAX */ i__3 = *n - *info; i__2 = max(i__3,1); clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1] , &i__2, &ierr); if (*info > 0) { i__1 = ilo - 1; clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n, &ierr); } } work[1].r = (real) maxwrk, work[1].i = 0.f; return 0; /* End of CGEEV */ } /* cgeev_ */