/* cgetrf.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static complex c_b2 = {-1.f,0.f}; static integer c__1 = 1; /* Subroutine */ int cgetrf_(integer *m, integer *n, complex *a, integer *lda, integer *ipiv, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; complex q__1; /* Builtin functions */ double c_abs(complex *); void c_div(complex *, complex *, complex *); /* Local variables */ integer i__, j, ipivstart, jpivstart, jp; complex tmp; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *), cgemm_(char *, char *, integer *, integer *, integer * , complex *, complex *, integer *, complex *, integer *, complex * , complex *, integer *); integer kcols; real sfmin; extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *); integer nstep, kahead; extern integer icamax_(integer *, complex *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); real pivmag; integer npived; extern /* Subroutine */ int claswp_(integer *, complex *, integer *, integer *, integer *, integer *, integer *); extern logical sisnan_(real *); integer kstart, ntopiv; /* -- LAPACK routine (version 3.X) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* May 2008 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGETRF computes an LU factorization of a general M-by-N matrix A */ /* using partial pivoting with row interchanges. */ /* The factorization has the form */ /* A = P * L * U */ /* where P is a permutation matrix, L is lower triangular with unit */ /* diagonal elements (lower trapezoidal if m > n), and U is upper */ /* triangular (upper trapezoidal if m < n). */ /* This code implements an iterative version of Sivan Toledo's recursive */ /* LU algorithm[1]. For square matrices, this iterative versions should */ /* be within a factor of two of the optimum number of memory transfers. */ /* The pattern is as follows, with the large blocks of U being updated */ /* in one call to DTRSM, and the dotted lines denoting sections that */ /* have had all pending permutations applied: */ /* 1 2 3 4 5 6 7 8 */ /* +-+-+---+-------+------ */ /* | |1| | | */ /* |.+-+ 2 | | */ /* | | | | | */ /* |.|.+-+-+ 4 | */ /* | | | |1| | */ /* | | |.+-+ | */ /* | | | | | | */ /* |.|.|.|.+-+-+---+ 8 */ /* | | | | | |1| | */ /* | | | | |.+-+ 2 | */ /* | | | | | | | | */ /* | | | | |.|.+-+-+ */ /* | | | | | | | |1| */ /* | | | | | | |.+-+ */ /* | | | | | | | | | */ /* |.|.|.|.|.|.|.|.+----- */ /* | | | | | | | | | */ /* The 1-2-1-4-1-2-1-8-... pattern is the position of the last 1 bit in */ /* the binary expansion of the current column. Each Schur update is */ /* applied as soon as the necessary portion of U is available. */ /* [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with */ /* Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997), */ /* 1065-1081. http://dx.doi.org/10.1137/S0895479896297744 */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the M-by-N matrix to be factored. */ /* On exit, the factors L and U from the factorization */ /* A = P*L*U; the unit diagonal elements of L are not stored. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* IPIV (output) INTEGER array, dimension (min(M,N)) */ /* The pivot indices; for 1 <= i <= min(M,N), row i of the */ /* matrix was interchanged with row IPIV(i). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */ /* has been completed, but the factor U is exactly */ /* singular, and division by zero will occur if it is used */ /* to solve a system of equations. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("CGETRF", &i__1); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } /* Compute machine safe minimum */ sfmin = slamch_("S"); nstep = min(*m,*n); i__1 = nstep; for (j = 1; j <= i__1; ++j) { kahead = j & -j; kstart = j + 1 - kahead; /* Computing MIN */ i__2 = kahead, i__3 = *m - j; kcols = min(i__2,i__3); /* Find pivot. */ i__2 = *m - j + 1; jp = j - 1 + icamax_(&i__2, &a[j + j * a_dim1], &c__1); ipiv[j] = jp; /* Permute just this column. */ if (jp != j) { i__2 = j + j * a_dim1; tmp.r = a[i__2].r, tmp.i = a[i__2].i; i__2 = j + j * a_dim1; i__3 = jp + j * a_dim1; a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i; i__2 = jp + j * a_dim1; a[i__2].r = tmp.r, a[i__2].i = tmp.i; } /* Apply pending permutations to L */ ntopiv = 1; ipivstart = j; jpivstart = j - ntopiv; while(ntopiv < kahead) { claswp_(&ntopiv, &a[jpivstart * a_dim1 + 1], lda, &ipivstart, &j, &ipiv[1], &c__1); ipivstart -= ntopiv; ntopiv <<= 1; jpivstart -= ntopiv; } /* Permute U block to match L */ claswp_(&kcols, &a[(j + 1) * a_dim1 + 1], lda, &kstart, &j, &ipiv[1], &c__1); /* Factor the current column */ pivmag = c_abs(&a[j + j * a_dim1]); if (pivmag != 0.f && ! sisnan_(&pivmag)) { if (pivmag >= sfmin) { i__2 = *m - j; c_div(&q__1, &c_b1, &a[j + j * a_dim1]); cscal_(&i__2, &q__1, &a[j + 1 + j * a_dim1], &c__1); } else { i__2 = *m - j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = j + i__ + j * a_dim1; c_div(&q__1, &a[j + i__ + j * a_dim1], &a[j + j * a_dim1]) ; a[i__3].r = q__1.r, a[i__3].i = q__1.i; } } } else if (pivmag == 0.f && *info == 0) { *info = j; } /* Solve for U block. */ ctrsm_("Left", "Lower", "No transpose", "Unit", &kahead, &kcols, & c_b1, &a[kstart + kstart * a_dim1], lda, &a[kstart + (j + 1) * a_dim1], lda); /* Schur complement. */ i__2 = *m - j; cgemm_("No transpose", "No transpose", &i__2, &kcols, &kahead, &c_b2, &a[j + 1 + kstart * a_dim1], lda, &a[kstart + (j + 1) * a_dim1], lda, &c_b1, &a[j + 1 + (j + 1) * a_dim1], lda); } /* Handle pivot permutations on the way out of the recursion */ npived = nstep & -nstep; j = nstep - npived; while(j > 0) { ntopiv = j & -j; i__1 = j + 1; claswp_(&ntopiv, &a[(j - ntopiv + 1) * a_dim1 + 1], lda, &i__1, & nstep, &ipiv[1], &c__1); j -= ntopiv; } /* If short and wide, handle the rest of the columns. */ if (*m < *n) { i__1 = *n - *m; claswp_(&i__1, &a[(*m + kcols + 1) * a_dim1 + 1], lda, &c__1, m, & ipiv[1], &c__1); i__1 = *n - *m; ctrsm_("Left", "Lower", "No transpose", "Unit", m, &i__1, &c_b1, &a[ a_offset], lda, &a[(*m + kcols + 1) * a_dim1 + 1], lda); } return 0; /* End of CGETRF */ } /* cgetrf_ */