/* zhemm.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zhemm_(char *side, char *uplo, integer *m, integer *n, doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex * b, integer *ldb, doublecomplex *beta, doublecomplex *c__, integer * ldc) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublereal d__1; doublecomplex z__1, z__2, z__3, z__4, z__5; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, k, info; doublecomplex temp1, temp2; extern logical lsame_(char *, char *); integer nrowa; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHEMM performs one of the matrix-matrix operations */ /* C := alpha*A*B + beta*C, */ /* or */ /* C := alpha*B*A + beta*C, */ /* where alpha and beta are scalars, A is an hermitian matrix and B and */ /* C are m by n matrices. */ /* Arguments */ /* ========== */ /* SIDE - CHARACTER*1. */ /* On entry, SIDE specifies whether the hermitian matrix A */ /* appears on the left or right in the operation as follows: */ /* SIDE = 'L' or 'l' C := alpha*A*B + beta*C, */ /* SIDE = 'R' or 'r' C := alpha*B*A + beta*C, */ /* Unchanged on exit. */ /* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the upper or lower */ /* triangular part of the hermitian matrix A is to be */ /* referenced as follows: */ /* UPLO = 'U' or 'u' Only the upper triangular part of the */ /* hermitian matrix is to be referenced. */ /* UPLO = 'L' or 'l' Only the lower triangular part of the */ /* hermitian matrix is to be referenced. */ /* Unchanged on exit. */ /* M - INTEGER. */ /* On entry, M specifies the number of rows of the matrix C. */ /* M must be at least zero. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the number of columns of the matrix C. */ /* N must be at least zero. */ /* Unchanged on exit. */ /* ALPHA - COMPLEX*16 . */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is */ /* m when SIDE = 'L' or 'l' and is n otherwise. */ /* Before entry with SIDE = 'L' or 'l', the m by m part of */ /* the array A must contain the hermitian matrix, such that */ /* when UPLO = 'U' or 'u', the leading m by m upper triangular */ /* part of the array A must contain the upper triangular part */ /* of the hermitian matrix and the strictly lower triangular */ /* part of A is not referenced, and when UPLO = 'L' or 'l', */ /* the leading m by m lower triangular part of the array A */ /* must contain the lower triangular part of the hermitian */ /* matrix and the strictly upper triangular part of A is not */ /* referenced. */ /* Before entry with SIDE = 'R' or 'r', the n by n part of */ /* the array A must contain the hermitian matrix, such that */ /* when UPLO = 'U' or 'u', the leading n by n upper triangular */ /* part of the array A must contain the upper triangular part */ /* of the hermitian matrix and the strictly lower triangular */ /* part of A is not referenced, and when UPLO = 'L' or 'l', */ /* the leading n by n lower triangular part of the array A */ /* must contain the lower triangular part of the hermitian */ /* matrix and the strictly upper triangular part of A is not */ /* referenced. */ /* Note that the imaginary parts of the diagonal elements need */ /* not be set, they are assumed to be zero. */ /* Unchanged on exit. */ /* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. When SIDE = 'L' or 'l' then */ /* LDA must be at least max( 1, m ), otherwise LDA must be at */ /* least max( 1, n ). */ /* Unchanged on exit. */ /* B - COMPLEX*16 array of DIMENSION ( LDB, n ). */ /* Before entry, the leading m by n part of the array B must */ /* contain the matrix B. */ /* Unchanged on exit. */ /* LDB - INTEGER. */ /* On entry, LDB specifies the first dimension of B as declared */ /* in the calling (sub) program. LDB must be at least */ /* max( 1, m ). */ /* Unchanged on exit. */ /* BETA - COMPLEX*16 . */ /* On entry, BETA specifies the scalar beta. When BETA is */ /* supplied as zero then C need not be set on input. */ /* Unchanged on exit. */ /* C - COMPLEX*16 array of DIMENSION ( LDC, n ). */ /* Before entry, the leading m by n part of the array C must */ /* contain the matrix C, except when beta is zero, in which */ /* case C need not be set on entry. */ /* On exit, the array C is overwritten by the m by n updated */ /* matrix. */ /* LDC - INTEGER. */ /* On entry, LDC specifies the first dimension of C as declared */ /* in the calling (sub) program. LDC must be at least */ /* max( 1, m ). */ /* Unchanged on exit. */ /* Level 3 Blas routine. */ /* -- Written on 8-February-1989. */ /* Jack Dongarra, Argonne National Laboratory. */ /* Iain Duff, AERE Harwell. */ /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ /* Sven Hammarling, Numerical Algorithms Group Ltd. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* Set NROWA as the number of rows of A. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; /* Function Body */ if (lsame_(side, "L")) { nrowa = *m; } else { nrowa = *n; } upper = lsame_(uplo, "U"); /* Test the input parameters. */ info = 0; if (! lsame_(side, "L") && ! lsame_(side, "R")) { info = 1; } else if (! upper && ! lsame_(uplo, "L")) { info = 2; } else if (*m < 0) { info = 3; } else if (*n < 0) { info = 4; } else if (*lda < max(1,nrowa)) { info = 7; } else if (*ldb < max(1,*m)) { info = 9; } else if (*ldc < max(1,*m)) { info = 12; } if (info != 0) { xerbla_("ZHEMM ", &info); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || alpha->r == 0. && alpha->i == 0. && (beta->r == 1. && beta->i == 0.)) { return 0; } /* And when alpha.eq.zero. */ if (alpha->r == 0. && alpha->i == 0.) { if (beta->r == 0. && beta->i == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i, z__1.i = beta->r * c__[i__4].i + beta->i * c__[ i__4].r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L30: */ } /* L40: */ } } return 0; } /* Start the operations. */ if (lsame_(side, "L")) { /* Form C := alpha*A*B + beta*C. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i, z__1.i = alpha->r * b[i__3].i + alpha->i * b[i__3] .r; temp1.r = z__1.r, temp1.i = z__1.i; temp2.r = 0., temp2.i = 0.; i__3 = i__ - 1; for (k = 1; k <= i__3; ++k) { i__4 = k + j * c_dim1; i__5 = k + j * c_dim1; i__6 = k + i__ * a_dim1; z__2.r = temp1.r * a[i__6].r - temp1.i * a[i__6].i, z__2.i = temp1.r * a[i__6].i + temp1.i * a[ i__6].r; z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i + z__2.i; c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; i__4 = k + j * b_dim1; d_cnjg(&z__3, &a[k + i__ * a_dim1]); z__2.r = b[i__4].r * z__3.r - b[i__4].i * z__3.i, z__2.i = b[i__4].r * z__3.i + b[i__4].i * z__3.r; z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; temp2.r = z__1.r, temp2.i = z__1.i; /* L50: */ } if (beta->r == 0. && beta->i == 0.) { i__3 = i__ + j * c_dim1; i__4 = i__ + i__ * a_dim1; d__1 = a[i__4].r; z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; z__3.r = alpha->r * temp2.r - alpha->i * temp2.i, z__3.i = alpha->r * temp2.i + alpha->i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] .i, z__3.i = beta->r * c__[i__4].i + beta->i * c__[i__4].r; i__5 = i__ + i__ * a_dim1; d__1 = a[i__5].r; z__4.r = d__1 * temp1.r, z__4.i = d__1 * temp1.i; z__2.r = z__3.r + z__4.r, z__2.i = z__3.i + z__4.i; z__5.r = alpha->r * temp2.r - alpha->i * temp2.i, z__5.i = alpha->r * temp2.i + alpha->i * temp2.r; z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } /* L60: */ } /* L70: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { for (i__ = *m; i__ >= 1; --i__) { i__2 = i__ + j * b_dim1; z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2].i, z__1.i = alpha->r * b[i__2].i + alpha->i * b[i__2] .r; temp1.r = z__1.r, temp1.i = z__1.i; temp2.r = 0., temp2.i = 0.; i__2 = *m; for (k = i__ + 1; k <= i__2; ++k) { i__3 = k + j * c_dim1; i__4 = k + j * c_dim1; i__5 = k + i__ * a_dim1; z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, z__2.i = temp1.r * a[i__5].i + temp1.i * a[ i__5].r; z__1.r = c__[i__4].r + z__2.r, z__1.i = c__[i__4].i + z__2.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; i__3 = k + j * b_dim1; d_cnjg(&z__3, &a[k + i__ * a_dim1]); z__2.r = b[i__3].r * z__3.r - b[i__3].i * z__3.i, z__2.i = b[i__3].r * z__3.i + b[i__3].i * z__3.r; z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; temp2.r = z__1.r, temp2.i = z__1.i; /* L80: */ } if (beta->r == 0. && beta->i == 0.) { i__2 = i__ + j * c_dim1; i__3 = i__ + i__ * a_dim1; d__1 = a[i__3].r; z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; z__3.r = alpha->r * temp2.r - alpha->i * temp2.i, z__3.i = alpha->r * temp2.i + alpha->i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__2].r = z__1.r, c__[i__2].i = z__1.i; } else { i__2 = i__ + j * c_dim1; i__3 = i__ + j * c_dim1; z__3.r = beta->r * c__[i__3].r - beta->i * c__[i__3] .i, z__3.i = beta->r * c__[i__3].i + beta->i * c__[i__3].r; i__4 = i__ + i__ * a_dim1; d__1 = a[i__4].r; z__4.r = d__1 * temp1.r, z__4.i = d__1 * temp1.i; z__2.r = z__3.r + z__4.r, z__2.i = z__3.i + z__4.i; z__5.r = alpha->r * temp2.r - alpha->i * temp2.i, z__5.i = alpha->r * temp2.i + alpha->i * temp2.r; z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i; c__[i__2].r = z__1.r, c__[i__2].i = z__1.i; } /* L90: */ } /* L100: */ } } } else { /* Form C := alpha*B*A + beta*C. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j + j * a_dim1; d__1 = a[i__2].r; z__1.r = d__1 * alpha->r, z__1.i = d__1 * alpha->i; temp1.r = z__1.r, temp1.i = z__1.i; if (beta->r == 0. && beta->i == 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * b_dim1; z__1.r = temp1.r * b[i__4].r - temp1.i * b[i__4].i, z__1.i = temp1.r * b[i__4].i + temp1.i * b[i__4] .r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L110: */ } } else { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__2.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i, z__2.i = beta->r * c__[i__4].i + beta->i * c__[ i__4].r; i__5 = i__ + j * b_dim1; z__3.r = temp1.r * b[i__5].r - temp1.i * b[i__5].i, z__3.i = temp1.r * b[i__5].i + temp1.i * b[i__5] .r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L120: */ } } i__2 = j - 1; for (k = 1; k <= i__2; ++k) { if (upper) { i__3 = k + j * a_dim1; z__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i, z__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3] .r; temp1.r = z__1.r, temp1.i = z__1.i; } else { d_cnjg(&z__2, &a[j + k * a_dim1]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp1.r = z__1.r, temp1.i = z__1.i; } i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * c_dim1; i__5 = i__ + j * c_dim1; i__6 = i__ + k * b_dim1; z__2.r = temp1.r * b[i__6].r - temp1.i * b[i__6].i, z__2.i = temp1.r * b[i__6].i + temp1.i * b[i__6] .r; z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i + z__2.i; c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; /* L130: */ } /* L140: */ } i__2 = *n; for (k = j + 1; k <= i__2; ++k) { if (upper) { d_cnjg(&z__2, &a[j + k * a_dim1]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp1.r = z__1.r, temp1.i = z__1.i; } else { i__3 = k + j * a_dim1; z__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i, z__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3] .r; temp1.r = z__1.r, temp1.i = z__1.i; } i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * c_dim1; i__5 = i__ + j * c_dim1; i__6 = i__ + k * b_dim1; z__2.r = temp1.r * b[i__6].r - temp1.i * b[i__6].i, z__2.i = temp1.r * b[i__6].i + temp1.i * b[i__6] .r; z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i + z__2.i; c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; /* L150: */ } /* L160: */ } /* L170: */ } } return 0; /* End of ZHEMM . */ } /* zhemm_ */