#include "blaswrap.h" /* zget01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static integer c__1 = 1; static integer c_n1 = -1; /* Subroutine */ int zget01_(integer *m, integer *n, doublecomplex *a, integer *lda, doublecomplex *afac, integer *ldafac, integer *ipiv, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer a_dim1, a_offset, afac_dim1, afac_offset, i__1, i__2, i__3, i__4, i__5; doublecomplex z__1, z__2; /* Local variables */ static integer i__, j, k; static doublecomplex t; static doublereal eps, anorm; extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *), zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); extern /* Double Complex */ VOID zdotu_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern /* Subroutine */ int ztrmv_(char *, char *, char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zlaswp_(integer *, doublecomplex *, integer *, integer *, integer *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZGET01 reconstructs a matrix A from its L*U factorization and computes the residual norm(L*U - A) / ( N * norm(A) * EPS ), where EPS is the machine epsilon. Arguments ========== M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input) COMPLEX*16 array, dimension (LDA,N) The original M x N matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). AFAC (input/output) COMPLEX*16 array, dimension (LDAFAC,N) The factored form of the matrix A. AFAC contains the factors L and U from the L*U factorization as computed by ZGETRF. Overwritten with the reconstructed matrix, and then with the difference L*U - A. LDAFAC (input) INTEGER The leading dimension of the array AFAC. LDAFAC >= max(1,M). IPIV (input) INTEGER array, dimension (N) The pivot indices from ZGETRF. RWORK (workspace) DOUBLE PRECISION array, dimension (M) RESID (output) DOUBLE PRECISION norm(L*U - A) / ( N * norm(A) * EPS ) ===================================================================== Quick exit if M = 0 or N = 0. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; afac_dim1 = *ldafac; afac_offset = 1 + afac_dim1; afac -= afac_offset; --ipiv; --rwork; /* Function Body */ if (*m <= 0 || *n <= 0) { *resid = 0.; return 0; } /* Determine EPS and the norm of A. */ eps = dlamch_("Epsilon"); anorm = zlange_("1", m, n, &a[a_offset], lda, &rwork[1]); /* Compute the product L*U and overwrite AFAC with the result. A column at a time of the product is obtained, starting with column N. */ for (k = *n; k >= 1; --k) { if (k > *m) { ztrmv_("Lower", "No transpose", "Unit", m, &afac[afac_offset], ldafac, &afac[k * afac_dim1 + 1], &c__1); } else { /* Compute elements (K+1:M,K) */ i__1 = k + k * afac_dim1; t.r = afac[i__1].r, t.i = afac[i__1].i; if (k + 1 <= *m) { i__1 = *m - k; zscal_(&i__1, &t, &afac[k + 1 + k * afac_dim1], &c__1); i__1 = *m - k; i__2 = k - 1; zgemv_("No transpose", &i__1, &i__2, &c_b1, &afac[k + 1 + afac_dim1], ldafac, &afac[k * afac_dim1 + 1], &c__1, & c_b1, &afac[k + 1 + k * afac_dim1], &c__1) ; } /* Compute the (K,K) element */ i__1 = k + k * afac_dim1; i__2 = k - 1; zdotu_(&z__2, &i__2, &afac[k + afac_dim1], ldafac, &afac[k * afac_dim1 + 1], &c__1); z__1.r = t.r + z__2.r, z__1.i = t.i + z__2.i; afac[i__1].r = z__1.r, afac[i__1].i = z__1.i; /* Compute elements (1:K-1,K) */ i__1 = k - 1; ztrmv_("Lower", "No transpose", "Unit", &i__1, &afac[afac_offset], ldafac, &afac[k * afac_dim1 + 1], &c__1); } /* L10: */ } i__1 = min(*m,*n); zlaswp_(n, &afac[afac_offset], ldafac, &c__1, &i__1, &ipiv[1], &c_n1); /* Compute the difference L*U - A and store in AFAC. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * afac_dim1; i__4 = i__ + j * afac_dim1; i__5 = i__ + j * a_dim1; z__1.r = afac[i__4].r - a[i__5].r, z__1.i = afac[i__4].i - a[i__5] .i; afac[i__3].r = z__1.r, afac[i__3].i = z__1.i; /* L20: */ } /* L30: */ } /* Compute norm( L*U - A ) / ( N * norm(A) * EPS ) */ *resid = zlange_("1", m, n, &afac[afac_offset], ldafac, &rwork[1]); if (anorm <= 0.) { if (*resid != 0.) { *resid = 1. / eps; } } else { *resid = *resid / (doublereal) (*n) / anorm / eps; } return 0; /* End of ZGET01 */ } /* zget01_ */