#include "blaswrap.h" /* srqt02.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static real c_b4 = -1e10f; static real c_b10 = 0.f; static real c_b15 = -1.f; static real c_b16 = 1.f; /* Subroutine */ int srqt02_(integer *m, integer *n, integer *k, real *a, real *af, real *q, real *r__, integer *lda, real *tau, real *work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, r_offset, i__1, i__2; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static real eps; static integer info; static real resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static real anorm; extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, real *, real *, integer *, real *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); extern /* Subroutine */ int sorgrq_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SRQT02 tests SORGRQ, which generates an m-by-n matrix Q with orthonornmal rows that is defined as the product of k elementary reflectors. Given the RQ factorization of an m-by-n matrix A, SRQT02 generates the orthogonal matrix Q defined by the factorization of the last k rows of A; it compares R(m-k+1:m,n-m+1:n) with A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are orthonormal. Arguments ========= M (input) INTEGER The number of rows of the matrix Q to be generated. M >= 0. N (input) INTEGER The number of columns of the matrix Q to be generated. N >= M >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0. A (input) REAL array, dimension (LDA,N) The m-by-n matrix A which was factorized by SRQT01. AF (input) REAL array, dimension (LDA,N) Details of the RQ factorization of A, as returned by SGERQF. See SGERQF for further details. Q (workspace) REAL array, dimension (LDA,N) R (workspace) REAL array, dimension (LDA,M) LDA (input) INTEGER The leading dimension of the arrays A, AF, Q and L. LDA >= N. TAU (input) REAL array, dimension (M) The scalar factors of the elementary reflectors corresponding to the RQ factorization in AF. WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The dimension of the array WORK. RWORK (workspace) REAL array, dimension (M) RESULT (output) REAL array, dimension (2) The test ratios: RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) ===================================================================== Quick return if possible Parameter adjustments */ r_dim1 = *lda; r_offset = 1 + r_dim1; r__ -= r_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ if (*m == 0 || *n == 0 || *k == 0) { result[1] = 0.f; result[2] = 0.f; return 0; } eps = slamch_("Epsilon"); /* Copy the last k rows of the factorization to the array Q */ slaset_("Full", m, n, &c_b4, &c_b4, &q[q_offset], lda); if (*k < *n) { i__1 = *n - *k; slacpy_("Full", k, &i__1, &af[*m - *k + 1 + af_dim1], lda, &q[*m - *k + 1 + q_dim1], lda); } if (*k > 1) { i__1 = *k - 1; i__2 = *k - 1; slacpy_("Lower", &i__1, &i__2, &af[*m - *k + 2 + (*n - *k + 1) * af_dim1], lda, &q[*m - *k + 2 + (*n - *k + 1) * q_dim1], lda); } /* Generate the last n rows of the matrix Q */ s_copy(srnamc_1.srnamt, "SORGRQ", (ftnlen)6, (ftnlen)6); sorgrq_(m, n, k, &q[q_offset], lda, &tau[*m - *k + 1], &work[1], lwork, & info); /* Copy R(m-k+1:m,n-m+1:n) */ slaset_("Full", k, m, &c_b10, &c_b10, &r__[*m - *k + 1 + (*n - *m + 1) * r_dim1], lda); slacpy_("Upper", k, k, &af[*m - *k + 1 + (*n - *k + 1) * af_dim1], lda, & r__[*m - *k + 1 + (*n - *k + 1) * r_dim1], lda); /* Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)' */ sgemm_("No transpose", "Transpose", k, m, n, &c_b15, &a[*m - *k + 1 + a_dim1], lda, &q[q_offset], lda, &c_b16, &r__[*m - *k + 1 + (*n - *m + 1) * r_dim1], lda); /* Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) . */ anorm = slange_("1", k, n, &a[*m - *k + 1 + a_dim1], lda, &rwork[1]); resid = slange_("1", k, m, &r__[*m - *k + 1 + (*n - *m + 1) * r_dim1], lda, &rwork[1]); if (anorm > 0.f) { result[1] = resid / (real) max(1,*n) / anorm / eps; } else { result[1] = 0.f; } /* Compute I - Q*Q' */ slaset_("Full", m, m, &c_b10, &c_b16, &r__[r_offset], lda); ssyrk_("Upper", "No transpose", m, n, &c_b15, &q[q_offset], lda, &c_b16, & r__[r_offset], lda); /* Compute norm( I - Q*Q' ) / ( N * EPS ) . */ resid = slansy_("1", "Upper", m, &r__[r_offset], lda, &rwork[1]); result[2] = resid / (real) max(1,*n) / eps; return 0; /* End of SRQT02 */ } /* srqt02_ */