#include "blaswrap.h" /* sqrt17.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c__13 = 13; static real c_b13 = -1.f; static real c_b14 = 1.f; static integer c__0 = 0; static real c_b22 = 0.f; doublereal sqrt17_(char *trans, integer *iresid, integer *m, integer *n, integer *nrhs, real *a, integer *lda, real *x, integer *ldx, real *b, integer *ldb, real *c__, real *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, x_dim1, x_offset, i__1; real ret_val; /* Local variables */ static real err; static integer iscl, info; extern logical lsame_(char *, char *); extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static real norma, normb; static integer ncols; static real normx, rwork[1]; static integer nrows; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int xerbla_(char *, integer *); static real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); static real smlnum, normrs; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SQRT17 computes the ratio || R'*op(A) ||/(||A||*alpha*max(M,N,NRHS)*eps) where R = op(A)*X - B, op(A) is A or A', and alpha = ||B|| if IRESID = 1 (zero-residual problem) alpha = ||R|| if IRESID = 2 (otherwise). Arguments ========= TRANS (input) CHARACTER*1 Specifies whether or not the transpose of A is used. = 'N': No transpose, op(A) = A. = 'T': Transpose, op(A) = A'. IRESID (input) INTEGER IRESID = 1 indicates zero-residual problem. IRESID = 2 indicates non-zero residual. M (input) INTEGER The number of rows of the matrix A. If TRANS = 'N', the number of rows of the matrix B. If TRANS = 'T', the number of rows of the matrix X. N (input) INTEGER The number of columns of the matrix A. If TRANS = 'N', the number of rows of the matrix X. If TRANS = 'T', the number of rows of the matrix B. NRHS (input) INTEGER The number of columns of the matrices X and B. A (input) REAL array, dimension (LDA,N) The m-by-n matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= M. X (input) REAL array, dimension (LDX,NRHS) If TRANS = 'N', the n-by-nrhs matrix X. If TRANS = 'T', the m-by-nrhs matrix X. LDX (input) INTEGER The leading dimension of the array X. If TRANS = 'N', LDX >= N. If TRANS = 'T', LDX >= M. B (input) REAL array, dimension (LDB,NRHS) If TRANS = 'N', the m-by-nrhs matrix B. If TRANS = 'T', the n-by-nrhs matrix B. LDB (input) INTEGER The leading dimension of the array B. If TRANS = 'N', LDB >= M. If TRANS = 'T', LDB >= N. C (workspace) REAL array, dimension (LDB,NRHS) WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The length of the array WORK. LWORK >= NRHS*(M+N). ===================================================================== Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; c_dim1 = *ldb; c_offset = 1 + c_dim1; c__ -= c_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ ret_val = 0.f; if (lsame_(trans, "N")) { nrows = *m; ncols = *n; } else if (lsame_(trans, "T")) { nrows = *n; ncols = *m; } else { xerbla_("SQRT17", &c__1); return ret_val; } if (*lwork < ncols * *nrhs) { xerbla_("SQRT17", &c__13); return ret_val; } if (*m <= 0 || *n <= 0 || *nrhs <= 0) { return ret_val; } norma = slange_("One-norm", m, n, &a[a_offset], lda, rwork); smlnum = slamch_("Safe minimum") / slamch_("Precision"); bignum = 1.f / smlnum; iscl = 0; /* compute residual and scale it */ slacpy_("All", &nrows, nrhs, &b[b_offset], ldb, &c__[c_offset], ldb); sgemm_(trans, "No transpose", &nrows, nrhs, &ncols, &c_b13, &a[a_offset], lda, &x[x_offset], ldx, &c_b14, &c__[c_offset], ldb); normrs = slange_("Max", &nrows, nrhs, &c__[c_offset], ldb, rwork); if (normrs > smlnum) { iscl = 1; slascl_("General", &c__0, &c__0, &normrs, &c_b14, &nrows, nrhs, &c__[ c_offset], ldb, &info); } /* compute R'*A */ sgemm_("Transpose", trans, nrhs, &ncols, &nrows, &c_b14, &c__[c_offset], ldb, &a[a_offset], lda, &c_b22, &work[1], nrhs); /* compute and properly scale error */ err = slange_("One-norm", nrhs, &ncols, &work[1], nrhs, rwork); if (norma != 0.f) { err /= norma; } if (iscl == 1) { err *= normrs; } if (*iresid == 1) { normb = slange_("One-norm", &nrows, nrhs, &b[b_offset], ldb, rwork); if (normb != 0.f) { err /= normb; } } else { normx = slange_("One-norm", &ncols, nrhs, &x[x_offset], ldx, rwork); if (normx != 0.f) { err /= normx; } } /* Computing MAX */ i__1 = max(*m,*n); ret_val = err / (slamch_("Epsilon") * (real) max(i__1,*nrhs)); return ret_val; /* End of SQRT17 */ } /* sqrt17_ */