#include "blaswrap.h" /* sqlt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static real c_b6 = -1e10f; static real c_b13 = 0.f; static real c_b20 = -1.f; static real c_b21 = 1.f; /* Subroutine */ int sqlt01_(integer *m, integer *n, real *a, real *af, real * q, real *l, integer *lda, real *tau, real *work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, q_offset, i__1, i__2; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static real eps; static integer info; static real resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static real anorm; static integer minmn; extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, real *, real *, integer *, real *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int sgeqlf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), sorgql_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SQLT01 tests SGEQLF, which computes the QL factorization of an m-by-n matrix A, and partially tests SORGQL which forms the m-by-m orthogonal matrix Q. SQLT01 compares L with Q'*A, and checks that Q is orthogonal. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input) REAL array, dimension (LDA,N) The m-by-n matrix A. AF (output) REAL array, dimension (LDA,N) Details of the QL factorization of A, as returned by SGEQLF. See SGEQLF for further details. Q (output) REAL array, dimension (LDA,M) The m-by-m orthogonal matrix Q. L (workspace) REAL array, dimension (LDA,max(M,N)) LDA (input) INTEGER The leading dimension of the arrays A, AF, Q and R. LDA >= max(M,N). TAU (output) REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by SGEQLF. WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The dimension of the array WORK. RWORK (workspace) REAL array, dimension (M) RESULT (output) REAL array, dimension (2) The test ratios: RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) ===================================================================== Parameter adjustments */ l_dim1 = *lda; l_offset = 1 + l_dim1; l -= l_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ minmn = min(*m,*n); eps = slamch_("Epsilon"); /* Copy the matrix A to the array AF. */ slacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda); /* Factorize the matrix A in the array AF. */ s_copy(srnamc_1.srnamt, "SGEQLF", (ftnlen)6, (ftnlen)6); sgeqlf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy details of Q */ slaset_("Full", m, m, &c_b6, &c_b6, &q[q_offset], lda); if (*m >= *n) { if (*n < *m && *n > 0) { i__1 = *m - *n; slacpy_("Full", &i__1, n, &af[af_offset], lda, &q[(*m - *n + 1) * q_dim1 + 1], lda); } if (*n > 1) { i__1 = *n - 1; i__2 = *n - 1; slacpy_("Upper", &i__1, &i__2, &af[*m - *n + 1 + (af_dim1 << 1)], lda, &q[*m - *n + 1 + (*m - *n + 2) * q_dim1], lda); } } else { if (*m > 1) { i__1 = *m - 1; i__2 = *m - 1; slacpy_("Upper", &i__1, &i__2, &af[(*n - *m + 2) * af_dim1 + 1], lda, &q[(q_dim1 << 1) + 1], lda); } } /* Generate the m-by-m matrix Q */ s_copy(srnamc_1.srnamt, "SORGQL", (ftnlen)6, (ftnlen)6); sorgql_(m, m, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy L */ slaset_("Full", m, n, &c_b13, &c_b13, &l[l_offset], lda); if (*m >= *n) { if (*n > 0) { slacpy_("Lower", n, n, &af[*m - *n + 1 + af_dim1], lda, &l[*m - * n + 1 + l_dim1], lda); } } else { if (*n > *m && *m > 0) { i__1 = *n - *m; slacpy_("Full", m, &i__1, &af[af_offset], lda, &l[l_offset], lda); } if (*m > 0) { slacpy_("Lower", m, m, &af[(*n - *m + 1) * af_dim1 + 1], lda, &l[( *n - *m + 1) * l_dim1 + 1], lda); } } /* Compute L - Q'*A */ sgemm_("Transpose", "No transpose", m, n, m, &c_b20, &q[q_offset], lda, & a[a_offset], lda, &c_b21, &l[l_offset], lda); /* Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) . */ anorm = slange_("1", m, n, &a[a_offset], lda, &rwork[1]); resid = slange_("1", m, n, &l[l_offset], lda, &rwork[1]); if (anorm > 0.f) { result[1] = resid / (real) max(1,*m) / anorm / eps; } else { result[1] = 0.f; } /* Compute I - Q'*Q */ slaset_("Full", m, m, &c_b13, &c_b21, &l[l_offset], lda); ssyrk_("Upper", "Transpose", m, m, &c_b20, &q[q_offset], lda, &c_b21, &l[ l_offset], lda); /* Compute norm( I - Q'*Q ) / ( M * EPS ) . */ resid = slansy_("1", "Upper", m, &l[l_offset], lda, &rwork[1]); result[2] = resid / (real) max(1,*m) / eps; return 0; /* End of SQLT01 */ } /* sqlt01_ */