#include "blaswrap.h" /* sppt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static real c_b14 = 1.f; /* Subroutine */ int sppt01_(char *uplo, integer *n, real *a, real *afac, real *rwork, real *resid) { /* System generated locals */ integer i__1; /* Local variables */ static integer i__, k; static real t; static integer kc; static real eps; static integer npp; extern doublereal sdot_(integer *, real *, integer *, real *, integer *); extern /* Subroutine */ int sspr_(char *, integer *, real *, real *, integer *, real *); extern logical lsame_(char *, char *); extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); static real anorm; extern /* Subroutine */ int stpmv_(char *, char *, char *, integer *, real *, real *, integer *); extern doublereal slamch_(char *), slansp_(char *, char *, integer *, real *, real *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SPPT01 reconstructs a symmetric positive definite packed matrix A from its L*L' or U'*U factorization and computes the residual norm( L*L' - A ) / ( N * norm(A) * EPS ) or norm( U'*U - A ) / ( N * norm(A) * EPS ), where EPS is the machine epsilon. Arguments ========== UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The number of rows and columns of the matrix A. N >= 0. A (input) REAL array, dimension (N*(N+1)/2) The original symmetric matrix A, stored as a packed triangular matrix. AFAC (input/output) REAL array, dimension (N*(N+1)/2) On entry, the factor L or U from the L*L' or U'*U factorization of A, stored as a packed triangular matrix. Overwritten with the reconstructed matrix, and then with the difference L*L' - A (or U'*U - A). RWORK (workspace) REAL array, dimension (N) RESID (output) REAL If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) ===================================================================== Quick exit if N = 0 Parameter adjustments */ --rwork; --afac; --a; /* Function Body */ if (*n <= 0) { *resid = 0.f; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); anorm = slansp_("1", uplo, n, &a[1], &rwork[1]); if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } /* Compute the product U'*U, overwriting U. */ if (lsame_(uplo, "U")) { kc = *n * (*n - 1) / 2 + 1; for (k = *n; k >= 1; --k) { /* Compute the (K,K) element of the result. */ t = sdot_(&k, &afac[kc], &c__1, &afac[kc], &c__1); afac[kc + k - 1] = t; /* Compute the rest of column K. */ if (k > 1) { i__1 = k - 1; stpmv_("Upper", "Transpose", "Non-unit", &i__1, &afac[1], & afac[kc], &c__1); kc -= k - 1; } /* L10: */ } /* Compute the product L*L', overwriting L. */ } else { kc = *n * (*n + 1) / 2; for (k = *n; k >= 1; --k) { /* Add a multiple of column K of the factor L to each of columns K+1 through N. */ if (k < *n) { i__1 = *n - k; sspr_("Lower", &i__1, &c_b14, &afac[kc + 1], &c__1, &afac[kc + *n - k + 1]); } /* Scale column K by the diagonal element. */ t = afac[kc]; i__1 = *n - k + 1; sscal_(&i__1, &t, &afac[kc], &c__1); kc -= *n - k + 2; /* L20: */ } } /* Compute the difference L*L' - A (or U'*U - A). */ npp = *n * (*n + 1) / 2; i__1 = npp; for (i__ = 1; i__ <= i__1; ++i__) { afac[i__] -= a[i__]; /* L30: */ } /* Compute norm( L*U - A ) / ( N * norm(A) * EPS ) */ *resid = slansp_("1", uplo, n, &afac[1], &rwork[1]); *resid = *resid / (real) (*n) / anorm / eps; return 0; /* End of SPPT01 */ } /* sppt01_ */