#include "blaswrap.h" /* dchkge.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static doublereal c_b23 = 0.; static integer c__8 = 8; /* Subroutine */ int dchkge_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nnb, integer *nbval, integer * nns, integer *nsval, doublereal *thresh, logical *tsterr, integer * nmax, doublereal *a, doublereal *afac, doublereal *ainv, doublereal * b, doublereal *x, doublereal *xact, doublereal *work, doublereal * rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 M = \002,i5,\002, N =\002,i5,\002, NB " "=\002,i4,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)" ; static char fmt_9998[] = "(\002 TRANS='\002,a1,\002', N =\002,i5,\002, N" "RHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g1" "2.5)"; static char fmt_9997[] = "(\002 NORM ='\002,a1,\002', N =\002,i5,\002" ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)" ; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer i__, k, m, n, nb, im, in, kl, ku, nt, lda, inb, ioff, mode, imat, info; static char path[3], dist[1]; static integer irhs, nrhs; static char norm[1], type__[1]; static integer nrun; extern /* Subroutine */ int alahd_(integer *, char *), dget01_( integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, doublereal *), dget02_(char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dget03_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *), dget04_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); static integer nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); extern /* Subroutine */ int dget07_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *); static doublereal rcond; static integer nimat; static doublereal anorm; static integer itran; static char trans[1]; static integer izero, nerrs; static doublereal dummy; static integer lwork; static logical zerot; static char xtype[1]; extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *); extern doublereal dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *), dgecon_(char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *); static doublereal rcondc; extern /* Subroutine */ int derrge_(char *, integer *), dgerfs_( char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), dgetrf_(integer *, integer *, doublereal *, integer *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *); static doublereal rcondi; extern /* Subroutine */ int dgetri_(integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), alasum_(char *, integer *, integer *, integer *, integer *); static doublereal cndnum, anormi, rcondo; extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *); static doublereal ainvnm; extern /* Subroutine */ int dgetrs_(char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); static logical trfcon; static doublereal anormo; extern /* Subroutine */ int xlaenv_(integer *, integer *); static doublereal result[8]; /* Fortran I/O blocks */ static cilist io___41 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9997, 0 }; /* -- LAPACK test routine (version 3.1.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. January 2007 Purpose ======= DCHKGE tests DGETRF, -TRI, -TRS, -RFS, and -CON. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NM (input) INTEGER The number of values of M contained in the vector MVAL. MVAL (input) INTEGER array, dimension (NM) The values of the matrix row dimension M. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column dimension N. NNB (input) INTEGER The number of values of NB contained in the vector NBVAL. NBVAL (input) INTEGER array, dimension (NBVAL) The values of the blocksize NB. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The maximum value permitted for M or N, used in dimensioning the work arrays. A (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) AFAC (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) AINV (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) B (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL. X (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) WORK (workspace) DOUBLE PRECISION array, dimension (NMAX*max(3,NSMAX)) RWORK (workspace) DOUBLE PRECISION array, dimension (max(2*NMAX,2*NSMAX+NWORK)) IWORK (workspace) INTEGER array, dimension (2*NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nbval; --nval; --mval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ xlaenv_(&c__1, &c__1); if (*tsterr) { derrge_(path, nout); } infoc_1.infot = 0; xlaenv_(&c__2, &c__2); /* Do for each value of M in MVAL */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; lda = max(1,m); /* Do for each value of N in NVAL */ i__2 = *nn; for (in = 1; in <= i__2; ++in) { n = nval[in]; *(unsigned char *)xtype = 'N'; nimat = 11; if (m <= 0 || n <= 0) { nimat = 1; } i__3 = nimat; for (imat = 1; imat <= i__3; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L100; } /* Skip types 5, 6, or 7 if the matrix size is too small. */ zerot = imat >= 5 && imat <= 7; if (zerot && n < imat - 4) { goto L100; } /* Set up parameters with DLATB4 and generate a test matrix with DLATMS. */ dlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)6, (ftnlen)6); dlatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, & work[1], &info); /* Check error code from DLATMS. */ if (info != 0) { alaerh_(path, "DLATMS", &info, &c__0, " ", &m, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L100; } /* For types 5-7, zero one or more columns of the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 5) { izero = 1; } else if (imat == 6) { izero = min(m,n); } else { izero = min(m,n) / 2 + 1; } ioff = (izero - 1) * lda; if (imat < 7) { i__4 = m; for (i__ = 1; i__ <= i__4; ++i__) { a[ioff + i__] = 0.; /* L20: */ } } else { i__4 = n - izero + 1; dlaset_("Full", &m, &i__4, &c_b23, &c_b23, &a[ioff + 1], &lda); } } else { izero = 0; } /* These lines, if used in place of the calls in the DO 60 loop, cause the code to bomb on a Sun SPARCstation. ANORMO = DLANGE( 'O', M, N, A, LDA, RWORK ) ANORMI = DLANGE( 'I', M, N, A, LDA, RWORK ) Do for each blocksize in NBVAL */ i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Compute the LU factorization of the matrix. */ dlacpy_("Full", &m, &n, &a[1], &lda, &afac[1], &lda); s_copy(srnamc_1.srnamt, "DGETRF", (ftnlen)6, (ftnlen)6); dgetrf_(&m, &n, &afac[1], &lda, &iwork[1], &info); /* Check error code from DGETRF. */ if (info != izero) { alaerh_(path, "DGETRF", &info, &izero, " ", &m, &n, & c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); } trfcon = FALSE_; /* + TEST 1 Reconstruct matrix from factors and compute residual. */ dlacpy_("Full", &m, &n, &afac[1], &lda, &ainv[1], &lda); dget01_(&m, &n, &a[1], &lda, &ainv[1], &lda, &iwork[1], & rwork[1], result); nt = 1; /* + TEST 2 Form the inverse if the factorization was successful and compute the residual. */ if (m == n && info == 0) { dlacpy_("Full", &n, &n, &afac[1], &lda, &ainv[1], & lda); s_copy(srnamc_1.srnamt, "DGETRI", (ftnlen)6, (ftnlen) 6); nrhs = nsval[1]; lwork = *nmax * max(3,nrhs); dgetri_(&n, &ainv[1], &lda, &iwork[1], &work[1], & lwork, &info); /* Check error code from DGETRI. */ if (info != 0) { alaerh_(path, "DGETRI", &info, &c__0, " ", &n, &n, &c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); } /* Compute the residual for the matrix times its inverse. Also compute the 1-norm condition number of A. */ dget03_(&n, &a[1], &lda, &ainv[1], &lda, &work[1], & lda, &rwork[1], &rcondo, &result[1]); anormo = dlange_("O", &m, &n, &a[1], &lda, &rwork[1]); /* Compute the infinity-norm condition number of A. */ anormi = dlange_("I", &m, &n, &a[1], &lda, &rwork[1]); ainvnm = dlange_("I", &n, &n, &ainv[1], &lda, &rwork[ 1]); if (anormi <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anormi / ainvnm; } nt = 2; } else { /* Do only the condition estimate if INFO > 0. */ trfcon = TRUE_; anormo = dlange_("O", &m, &n, &a[1], &lda, &rwork[1]); anormi = dlange_("I", &m, &n, &a[1], &lda, &rwork[1]); rcondo = 0.; rcondi = 0.; } /* Print information about the tests so far that did not pass the threshold. */ i__5 = nt; for (k = 1; k <= i__5; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___41.ciunit = *nout; s_wsfe(&io___41); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L30: */ } nrun += nt; /* Skip the remaining tests if this is not the first block size or if M .ne. N. Skip the solve tests if the matrix is singular. */ if (inb > 1 || m != n) { goto L90; } if (trfcon) { goto L70; } i__5 = *nns; for (irhs = 1; irhs <= i__5; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* + TEST 3 Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)6, ( ftnlen)6); dlarhs_(path, xtype, " ", trans, &n, &n, &kl, &ku, &nrhs, &a[1], &lda, &xact[1], &lda, &b[1] , &lda, iseed, &info); *(unsigned char *)xtype = 'C'; dlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "DGETRS", (ftnlen)6, ( ftnlen)6); dgetrs_(trans, &n, &nrhs, &afac[1], &lda, &iwork[ 1], &x[1], &lda, &info); /* Check error code from DGETRS. */ if (info != 0) { alaerh_(path, "DGETRS", &info, &c__0, trans, & n, &n, &c_n1, &c_n1, &nrhs, &imat, & nfail, &nerrs, nout); } dlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); dget02_(trans, &n, &n, &nrhs, &a[1], &lda, &x[1], &lda, &work[1], &lda, &rwork[1], &result[ 2]); /* + TEST 4 Check solution from generated exact solution. */ dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); /* + TESTS 5, 6, and 7 Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "DGERFS", (ftnlen)6, ( ftnlen)6); dgerfs_(trans, &n, &nrhs, &a[1], &lda, &afac[1], & lda, &iwork[1], &b[1], &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], & iwork[n + 1], &info); /* Check error code from DGERFS. */ if (info != 0) { alaerh_(path, "DGERFS", &info, &c__0, trans, & n, &n, &c_n1, &c_n1, &nrhs, &imat, & nfail, &nerrs, nout); } dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[4]); dget07_(trans, &n, &nrhs, &a[1], &lda, &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[nrhs + 1], &result[5]); /* Print information about the tests that did not pass the threshold. */ for (k = 3; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___46.ciunit = *nout; s_wsfe(&io___46); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L40: */ } nrun += 5; /* L50: */ } /* L60: */ } /* + TEST 8 Get an estimate of RCOND = 1/CNDNUM. */ L70: for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { anorm = anormo; rcondc = rcondo; *(unsigned char *)norm = 'O'; } else { anorm = anormi; rcondc = rcondi; *(unsigned char *)norm = 'I'; } s_copy(srnamc_1.srnamt, "DGECON", (ftnlen)6, (ftnlen) 6); dgecon_(norm, &n, &afac[1], &lda, &anorm, &rcond, & work[1], &iwork[n + 1], &info); /* Check error code from DGECON. */ if (info != 0) { alaerh_(path, "DGECON", &info, &c__0, norm, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } /* This line is needed on a Sun SPARCstation. */ dummy = rcond; result[7] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___50.ciunit = *nout; s_wsfe(&io___50); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L80: */ } L90: ; } L100: ; } /* L110: */ } /* L120: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of DCHKGE */ } /* dchkge_ */