#include "blaswrap.h" /* csyt03.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; /* Subroutine */ int csyt03_(char *uplo, integer *n, complex *a, integer *lda, complex *ainv, integer *ldainv, complex *work, integer *ldwork, real *rwork, real *rcond, real *resid) { /* System generated locals */ integer a_dim1, a_offset, ainv_dim1, ainv_offset, work_dim1, work_offset, i__1, i__2, i__3, i__4; complex q__1; /* Local variables */ static integer i__, j; static real eps; extern logical lsame_(char *, char *); static real anorm; extern /* Subroutine */ int csymm_(char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *); static real ainvnm; extern doublereal clansy_(char *, char *, integer *, complex *, integer *, real *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CSYT03 computes the residual for a complex symmetric matrix times its inverse: norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ) where EPS is the machine epsilon. Arguments ========== UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the complex symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The number of rows and columns of the matrix A. N >= 0. A (input) COMPLEX array, dimension (LDA,N) The original complex symmetric matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N) AINV (input/output) COMPLEX array, dimension (LDAINV,N) On entry, the inverse of the matrix A, stored as a symmetric matrix in the same format as A. In this version, AINV is expanded into a full matrix and multiplied by A, so the opposing triangle of AINV will be changed; i.e., if the upper triangular part of AINV is stored, the lower triangular part will be used as work space. LDAINV (input) INTEGER The leading dimension of the array AINV. LDAINV >= max(1,N). WORK (workspace) COMPLEX array, dimension (LDWORK,N) LDWORK (input) INTEGER The leading dimension of the array WORK. LDWORK >= max(1,N). RWORK (workspace) REAL array, dimension (N) RCOND (output) REAL The reciprocal of the condition number of A, computed as RCOND = 1/ (norm(A) * norm(AINV)). RESID (output) REAL norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) ===================================================================== Quick exit if N = 0 Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; ainv_dim1 = *ldainv; ainv_offset = 1 + ainv_dim1; ainv -= ainv_offset; work_dim1 = *ldwork; work_offset = 1 + work_dim1; work -= work_offset; --rwork; /* Function Body */ if (*n <= 0) { *rcond = 1.f; *resid = 0.f; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ eps = slamch_("Epsilon"); anorm = clansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]); ainvnm = clansy_("1", uplo, n, &ainv[ainv_offset], ldainv, &rwork[1]); if (anorm <= 0.f || ainvnm <= 0.f) { *rcond = 0.f; *resid = 1.f / eps; return 0; } *rcond = 1.f / anorm / ainvnm; /* Expand AINV into a full matrix and call CSYMM to multiply AINV on the left by A (store the result in WORK). */ if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = j + i__ * ainv_dim1; i__4 = i__ + j * ainv_dim1; ainv[i__3].r = ainv[i__4].r, ainv[i__3].i = ainv[i__4].i; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = j + i__ * ainv_dim1; i__4 = i__ + j * ainv_dim1; ainv[i__3].r = ainv[i__4].r, ainv[i__3].i = ainv[i__4].i; /* L30: */ } /* L40: */ } } q__1.r = -1.f, q__1.i = -0.f; csymm_("Left", uplo, n, n, &q__1, &a[a_offset], lda, &ainv[ainv_offset], ldainv, &c_b1, &work[work_offset], ldwork); /* Add the identity matrix to WORK . */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * work_dim1; i__3 = i__ + i__ * work_dim1; q__1.r = work[i__3].r + 1.f, q__1.i = work[i__3].i + 0.f; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L50: */ } /* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) */ *resid = clange_("1", n, n, &work[work_offset], ldwork, &rwork[1]); *resid = *resid * *rcond / eps / (real) (*n); return 0; /* End of CSYT03 */ } /* csyt03_ */