#include "blaswrap.h" /* cpot05.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int cpot05_(char *uplo, integer *n, integer *nrhs, complex * a, integer *lda, complex *b, integer *ldb, complex *x, integer *ldx, complex *xact, integer *ldxact, real *ferr, real *berr, real *reslts) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, xact_dim1, xact_offset, i__1, i__2, i__3, i__4, i__5; real r__1, r__2, r__3, r__4; complex q__1, q__2; /* Builtin functions */ double r_imag(complex *); /* Local variables */ static integer i__, j, k; static real eps, tmp, diff, axbi; static integer imax; static real unfl, ovfl; extern logical lsame_(char *, char *); static logical upper; static real xnorm; extern integer icamax_(integer *, complex *, integer *); extern doublereal slamch_(char *); static real errbnd; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CPOT05 tests the error bounds from iterative refinement for the computed solution to a system of equations A*X = B, where A is a Hermitian n by n matrix. RESLTS(1) = test of the error bound = norm(X - XACT) / ( norm(X) * FERR ) A large value is returned if this ratio is not less than one. RESLTS(2) = residual from the iterative refinement routine = the maximum of BERR / ( (n+1)*EPS + (*) ), where (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored. = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The number of rows of the matrices X, B, and XACT, and the order of the matrix A. N >= 0. NRHS (input) INTEGER The number of columns of the matrices X, B, and XACT. NRHS >= 0. A (input) COMPLEX array, dimension (LDA,N) The Hermitian matrix A. If UPLO = 'U', the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input) COMPLEX array, dimension (LDB,NRHS) The right hand side vectors for the system of linear equations. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input) COMPLEX array, dimension (LDX,NRHS) The computed solution vectors. Each vector is stored as a column of the matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). XACT (input) COMPLEX array, dimension (LDX,NRHS) The exact solution vectors. Each vector is stored as a column of the matrix XACT. LDXACT (input) INTEGER The leading dimension of the array XACT. LDXACT >= max(1,N). FERR (input) REAL array, dimension (NRHS) The estimated forward error bounds for each solution vector X. If XTRUE is the true solution, FERR bounds the magnitude of the largest entry in (X - XTRUE) divided by the magnitude of the largest entry in X. BERR (input) REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector (i.e., the smallest relative change in any entry of A or B that makes X an exact solution). RESLTS (output) REAL array, dimension (2) The maximum over the NRHS solution vectors of the ratios: RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) RESLTS(2) = BERR / ( (n+1)*EPS + (*) ) ===================================================================== Quick exit if N = 0 or NRHS = 0. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; xact_dim1 = *ldxact; xact_offset = 1 + xact_dim1; xact -= xact_offset; --ferr; --berr; --reslts; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { reslts[1] = 0.f; reslts[2] = 0.f; return 0; } eps = slamch_("Epsilon"); unfl = slamch_("Safe minimum"); ovfl = 1.f / unfl; upper = lsame_(uplo, "U"); /* Test 1: Compute the maximum of norm(X - XACT) / ( norm(X) * FERR ) over all the vectors X and XACT using the infinity-norm. */ errbnd = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { imax = icamax_(n, &x[j * x_dim1 + 1], &c__1); /* Computing MAX */ i__2 = imax + j * x_dim1; r__3 = (r__1 = x[i__2].r, dabs(r__1)) + (r__2 = r_imag(&x[imax + j * x_dim1]), dabs(r__2)); xnorm = dmax(r__3,unfl); diff = 0.f; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * x_dim1; i__4 = i__ + j * xact_dim1; q__2.r = x[i__3].r - xact[i__4].r, q__2.i = x[i__3].i - xact[i__4] .i; q__1.r = q__2.r, q__1.i = q__2.i; /* Computing MAX */ r__3 = diff, r__4 = (r__1 = q__1.r, dabs(r__1)) + (r__2 = r_imag(& q__1), dabs(r__2)); diff = dmax(r__3,r__4); /* L10: */ } if (xnorm > 1.f) { goto L20; } else if (diff <= ovfl * xnorm) { goto L20; } else { errbnd = 1.f / eps; goto L30; } L20: if (diff / xnorm <= ferr[j]) { /* Computing MAX */ r__1 = errbnd, r__2 = diff / xnorm / ferr[j]; errbnd = dmax(r__1,r__2); } else { errbnd = 1.f / eps; } L30: ; } reslts[1] = errbnd; /* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ i__1 = *nrhs; for (k = 1; k <= i__1; ++k) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + k * b_dim1; tmp = (r__1 = b[i__3].r, dabs(r__1)) + (r__2 = r_imag(&b[i__ + k * b_dim1]), dabs(r__2)); if (upper) { i__3 = i__ - 1; for (j = 1; j <= i__3; ++j) { i__4 = j + i__ * a_dim1; i__5 = j + k * x_dim1; tmp += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(& a[j + i__ * a_dim1]), dabs(r__2))) * ((r__3 = x[ i__5].r, dabs(r__3)) + (r__4 = r_imag(&x[j + k * x_dim1]), dabs(r__4))); /* L40: */ } i__3 = i__ + i__ * a_dim1; i__4 = i__ + k * x_dim1; tmp += (r__1 = a[i__3].r, dabs(r__1)) * ((r__2 = x[i__4].r, dabs(r__2)) + (r__3 = r_imag(&x[i__ + k * x_dim1]), dabs(r__3))); i__3 = *n; for (j = i__ + 1; j <= i__3; ++j) { i__4 = i__ + j * a_dim1; i__5 = j + k * x_dim1; tmp += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(& a[i__ + j * a_dim1]), dabs(r__2))) * ((r__3 = x[ i__5].r, dabs(r__3)) + (r__4 = r_imag(&x[j + k * x_dim1]), dabs(r__4))); /* L50: */ } } else { i__3 = i__ - 1; for (j = 1; j <= i__3; ++j) { i__4 = i__ + j * a_dim1; i__5 = j + k * x_dim1; tmp += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(& a[i__ + j * a_dim1]), dabs(r__2))) * ((r__3 = x[ i__5].r, dabs(r__3)) + (r__4 = r_imag(&x[j + k * x_dim1]), dabs(r__4))); /* L60: */ } i__3 = i__ + i__ * a_dim1; i__4 = i__ + k * x_dim1; tmp += (r__1 = a[i__3].r, dabs(r__1)) * ((r__2 = x[i__4].r, dabs(r__2)) + (r__3 = r_imag(&x[i__ + k * x_dim1]), dabs(r__3))); i__3 = *n; for (j = i__ + 1; j <= i__3; ++j) { i__4 = j + i__ * a_dim1; i__5 = j + k * x_dim1; tmp += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(& a[j + i__ * a_dim1]), dabs(r__2))) * ((r__3 = x[ i__5].r, dabs(r__3)) + (r__4 = r_imag(&x[j + k * x_dim1]), dabs(r__4))); /* L70: */ } } if (i__ == 1) { axbi = tmp; } else { axbi = dmin(axbi,tmp); } /* L80: */ } /* Computing MAX */ r__1 = axbi, r__2 = (*n + 1) * unfl; tmp = berr[k] / ((*n + 1) * eps + (*n + 1) * unfl / dmax(r__1,r__2)); if (k == 1) { reslts[2] = tmp; } else { reslts[2] = dmax(reslts[2],tmp); } /* L90: */ } return 0; /* End of CPOT05 */ } /* cpot05_ */