#include "blaswrap.h" /* cchkqp.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, iounit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static complex c_b11 = {0.f,0.f}; static real c_b16 = 1.f; static integer c__1 = 1; /* Subroutine */ int cchkqp_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, real *thresh, logical *tsterr, complex *a, complex *copya, real *s, real *copys, complex *tau, complex *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, type" " \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; real r__1; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer i__, k, m, n, im, in, lda; static real eps; static integer mode, info; static char path[3]; static integer ilow, nrun; extern /* Subroutine */ int alahd_(integer *, char *); static integer ihigh, nfail, iseed[4], imode; extern doublereal cqpt01_(integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *), cqrt11_(integer *, integer *, complex *, integer *, complex *, complex *, integer *), cqrt12_(integer *, integer *, complex *, integer *, real *, complex *, integer *, real *); static integer mnmin, istep, nerrs, lwork; extern /* Subroutine */ int cgeqpf_(integer *, integer *, complex *, integer *, integer *, complex *, complex *, real *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), alasum_(char *, integer *, integer *, integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char * , complex *, integer *, complex *, integer *), slaord_(char *, integer *, real *, integer *), cerrqp_(char *, integer *); static real result[3]; /* Fortran I/O blocks */ static cilist io___24 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CCHKQP tests CGEQPF. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NM (input) INTEGER The number of values of M contained in the vector MVAL. MVAL (input) INTEGER array, dimension (NM) The values of the matrix row dimension M. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column dimension N. THRESH (input) REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. A (workspace) COMPLEX array, dimension (MMAX*NMAX) where MMAX is the maximum value of M in MVAL and NMAX is the maximum value of N in NVAL. COPYA (workspace) COMPLEX array, dimension (MMAX*NMAX) S (workspace) REAL array, dimension (min(MMAX,NMAX)) COPYS (workspace) REAL array, dimension (min(MMAX,NMAX)) TAU (workspace) COMPLEX array, dimension (MMAX) WORK (workspace) COMPLEX array, dimension (max(M*max(M,N) + 4*min(M,N) + max(M,N))) RWORK (workspace) REAL array, dimension (4*NMAX) IWORK (workspace) INTEGER array, dimension (NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --tau; --copys; --s; --copya; --a; --nval; --mval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "QP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } eps = slamch_("Epsilon"); /* Test the error exits */ if (*tsterr) { cerrqp_(path, nout); } infoc_1.infot = 0; i__1 = *nm; for (im = 1; im <= i__1; ++im) { /* Do for each value of M in MVAL. */ m = mval[im]; lda = max(1,m); i__2 = *nn; for (in = 1; in <= i__2; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; mnmin = min(m,n); /* Computing MAX */ i__3 = 1, i__4 = m * max(m,n) + (mnmin << 2) + max(m,n); lwork = max(i__3,i__4); for (imode = 1; imode <= 6; ++imode) { if (! dotype[imode]) { goto L60; } /* Do for each type of matrix 1: zero matrix 2: one small singular value 3: geometric distribution of singular values 4: first n/2 columns fixed 5: last n/2 columns fixed 6: every second column fixed */ mode = imode; if (imode > 3) { mode = 1; } /* Generate test matrix of size m by n using singular value distribution indicated by `mode'. */ i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { iwork[i__] = 0; /* L20: */ } if (imode == 1) { claset_("Full", &m, &n, &c_b11, &c_b11, ©a[1], &lda); i__3 = mnmin; for (i__ = 1; i__ <= i__3; ++i__) { copys[i__] = 0.f; /* L30: */ } } else { r__1 = 1.f / eps; clatms_(&m, &n, "Uniform", iseed, "Nonsymm", ©s[1], & mode, &r__1, &c_b16, &m, &n, "No packing", ©a[ 1], &lda, &work[1], &info); if (imode >= 4) { if (imode == 4) { ilow = 1; istep = 1; /* Computing MAX */ i__3 = 1, i__4 = n / 2; ihigh = max(i__3,i__4); } else if (imode == 5) { /* Computing MAX */ i__3 = 1, i__4 = n / 2; ilow = max(i__3,i__4); istep = 1; ihigh = n; } else if (imode == 6) { ilow = 1; istep = 2; ihigh = n; } i__3 = ihigh; i__4 = istep; for (i__ = ilow; i__4 < 0 ? i__ >= i__3 : i__ <= i__3; i__ += i__4) { iwork[i__] = 1; /* L40: */ } } slaord_("Decreasing", &mnmin, ©s[1], &c__1); } /* Save A and its singular values */ clacpy_("All", &m, &n, ©a[1], &lda, &a[1], &lda); /* Compute the QR factorization with pivoting of A */ s_copy(srnamc_1.srnamt, "CGEQPF", (ftnlen)6, (ftnlen)6); cgeqpf_(&m, &n, &a[1], &lda, &iwork[1], &tau[1], &work[1], & rwork[1], &info); /* Compute norm(svd(a) - svd(r)) */ result[0] = cqrt12_(&m, &n, &a[1], &lda, ©s[1], &work[1], &lwork, &rwork[1]); /* Compute norm( A*P - Q*R ) */ result[1] = cqpt01_(&m, &n, &mnmin, ©a[1], &a[1], &lda, & tau[1], &iwork[1], &work[1], &lwork); /* Compute Q'*Q */ result[2] = cqrt11_(&m, &mnmin, &a[1], &lda, &tau[1], &work[1] , &lwork); /* Print information about the tests that did not pass the threshold. */ for (k = 1; k <= 3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___24.ciunit = *nout; s_wsfe(&io___24); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( real)); e_wsfe(); ++nfail; } /* L50: */ } nrun += 3; L60: ; } /* L70: */ } /* L80: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); /* End of CCHKQP */ return 0; } /* cchkqp_ */