#include "blaswrap.h" /* zcklse.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__8 = 8; static integer c__1 = 1; static integer c__0 = 0; /* Subroutine */ int zcklse_(integer *nn, integer *mval, integer *pval, integer *nval, integer *nmats, integer *iseed, doublereal *thresh, integer *nmax, doublecomplex *a, doublecomplex *af, doublecomplex *b, doublecomplex *bf, doublecomplex *x, doublecomplex *work, doublereal * rwork, integer *nin, integer *nout, integer *info) { /* Format strings */ static char fmt_9997[] = "(\002 *** Invalid input for LSE: M = \002," "i6,\002, P = \002,i6,\002, N = \002,i6,\002;\002,/\002 must " "satisfy P <= N <= P+M \002,\002(this set of values will be skip" "ped)\002)"; static char fmt_9999[] = "(\002 ZLATMS in ZCKLSE INFO = \002,i5)"; static char fmt_9998[] = "(\002 M=\002,i4,\002 P=\002,i4,\002, N=\002," "i4,\002, type \002,i2,\002, test \002,i2,\002, ratio=\002,g13.6)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5, i__6, i__7; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsle(cilist *), e_wsle(void), s_wsfe(cilist *), do_fio(integer * , char *, ftnlen), e_wsfe(void); /* Local variables */ static integer i__, m, n, p, ik, nt, lda, ldb, kla, klb, kua, kub, imat; static char path[3], type__[1]; static integer nrun, modea, modeb, nfail; static char dista[1], distb[1]; static integer iinfo; static doublereal anorm, bnorm; static integer lwork; extern /* Subroutine */ int dlatb9_(char *, integer *, integer *, integer *, integer *, char *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, char *, char *), alahdg_(integer *, char *); static doublereal cndnma, cndnmb; extern /* Subroutine */ int alareq_(char *, integer *, logical *, integer *, integer *, integer *), alasum_(char *, integer *, integer *, integer *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *); static logical dotype[8]; extern /* Subroutine */ int zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); static logical firstt; static doublereal result[7]; extern /* Subroutine */ int zlsets_(integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , integer *, doublereal *, doublereal *); /* Fortran I/O blocks */ static cilist io___13 = { 0, 0, 0, 0, 0 }; static cilist io___14 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___30 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___31 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___35 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZCKLSE tests ZGGLSE - a subroutine for solving linear equality constrained least square problem (LSE). Arguments ========= NN (input) INTEGER The number of values of (M,P,N) contained in the vectors (MVAL, PVAL, NVAL). MVAL (input) INTEGER array, dimension (NN) The values of the matrix row(column) dimension M. PVAL (input) INTEGER array, dimension (NN) The values of the matrix row(column) dimension P. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column(row) dimension N. NMATS (input) INTEGER The number of matrix types to be tested for each combination of matrix dimensions. If NMATS >= NTYPES (the maximum number of matrix types), then all the different types are generated for testing. If NMATS < NTYPES, another input line is read to get the numbers of the matrix types to be used. ISEED (input/output) INTEGER array, dimension (4) On entry, the seed of the random number generator. The array elements should be between 0 and 4095, otherwise they will be reduced mod 4096, and ISEED(4) must be odd. On exit, the next seed in the random number sequence after all the test matrices have been generated. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. NMAX (input) INTEGER The maximum value permitted for M or N, used in dimensioning the work arrays. A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) AF (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) B (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) BF (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) X (workspace) COMPLEX*16 array, dimension (5*NMAX) WORK (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX) NIN (input) INTEGER The unit number for input. NOUT (input) INTEGER The unit number for output. INFO (output) INTEGER = 0 : successful exit > 0 : If ZLATMS returns an error code, the absolute value of it is returned. ===================================================================== Initialize constants and the random number seed. Parameter adjustments */ --rwork; --work; --x; --bf; --b; --af; --a; --iseed; --nval; --pval; --mval; /* Function Body */ s_copy(path, "LSE", (ftnlen)3, (ftnlen)3); *info = 0; nrun = 0; nfail = 0; firstt = TRUE_; alareq_(path, nmats, dotype, &c__8, nin, nout); lda = *nmax; ldb = *nmax; lwork = *nmax * *nmax; /* Check for valid input values. */ i__1 = *nn; for (ik = 1; ik <= i__1; ++ik) { m = mval[ik]; p = pval[ik]; n = nval[ik]; if (p > n || n > m + p) { if (firstt) { io___13.ciunit = *nout; s_wsle(&io___13); e_wsle(); firstt = FALSE_; } io___14.ciunit = *nout; s_wsfe(&io___14); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&p, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); e_wsfe(); } /* L10: */ } firstt = TRUE_; /* Do for each value of M in MVAL. */ i__1 = *nn; for (ik = 1; ik <= i__1; ++ik) { m = mval[ik]; p = pval[ik]; n = nval[ik]; if (p > n || n > m + p) { goto L40; } for (imat = 1; imat <= 8; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat - 1]) { goto L30; } /* Set up parameters with DLATB9 and generate test matrices A and B with ZLATMS. */ dlatb9_(path, &imat, &m, &p, &n, type__, &kla, &kua, &klb, &kub, & anorm, &bnorm, &modea, &modeb, &cndnma, &cndnmb, dista, distb); zlatms_(&m, &n, dista, &iseed[1], type__, &rwork[1], &modea, & cndnma, &anorm, &kla, &kua, "No packing", &a[1], &lda, & work[1], &iinfo); if (iinfo != 0) { io___30.ciunit = *nout; s_wsfe(&io___30); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L30; } zlatms_(&p, &n, distb, &iseed[1], type__, &rwork[1], &modeb, & cndnmb, &bnorm, &klb, &kub, "No packing", &b[1], &ldb, & work[1], &iinfo); if (iinfo != 0) { io___31.ciunit = *nout; s_wsfe(&io___31); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L30; } /* Generate the right-hand sides C and D for the LSE. Computing MAX */ i__3 = m - 1; i__2 = max(i__3,0); /* Computing MAX */ i__5 = n - 1; i__4 = max(i__5,0); i__6 = max(n,1); i__7 = max(m,1); zlarhs_("ZGE", "New solution", "Upper", "N", &m, &n, &i__2, &i__4, &c__1, &a[1], &lda, &x[(*nmax << 2) + 1], &i__6, &x[1], & i__7, &iseed[1], &iinfo); /* Computing MAX */ i__3 = p - 1; i__2 = max(i__3,0); /* Computing MAX */ i__5 = n - 1; i__4 = max(i__5,0); i__6 = max(n,1); i__7 = max(p,1); zlarhs_("ZGE", "Computed", "Upper", "N", &p, &n, &i__2, &i__4, & c__1, &b[1], &ldb, &x[(*nmax << 2) + 1], &i__6, &x[(*nmax << 1) + 1], &i__7, &iseed[1], &iinfo); nt = 2; zlsets_(&m, &p, &n, &a[1], &af[1], &lda, &b[1], &bf[1], &ldb, &x[ 1], &x[*nmax + 1], &x[(*nmax << 1) + 1], &x[*nmax * 3 + 1] , &x[(*nmax << 2) + 1], &work[1], &lwork, &rwork[1], result); /* Print information about the tests that did not pass the threshold. */ i__2 = nt; for (i__ = 1; i__ <= i__2; ++i__) { if (result[i__ - 1] >= *thresh) { if (nfail == 0 && firstt) { firstt = FALSE_; alahdg_(nout, path); } io___35.ciunit = *nout; s_wsfe(&io___35); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&p, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[i__ - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } /* L20: */ } nrun += nt; L30: ; } L40: ; } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &c__0); return 0; /* End of ZCKLSE */ } /* zcklse_ */