#include "blaswrap.h" /* sgrqts.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static real c_b9 = -1e10f; static real c_b19 = 0.f; static real c_b30 = -1.f; static real c_b31 = 1.f; /* Subroutine */ int sgrqts_(integer *m, integer *p, integer *n, real *a, real *af, real *q, real *r__, integer *lda, real *taua, real *b, real *bf, real *z__, real *t, real *bwk, integer *ldb, real *taub, real * work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, r_dim1, r_offset, q_dim1, q_offset, b_dim1, b_offset, bf_dim1, bf_offset, t_dim1, t_offset, z_dim1, z_offset, bwk_dim1, bwk_offset, i__1, i__2; real r__1; /* Local variables */ static real ulp; static integer info; static real unfl, resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static real anorm, bnorm; extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, real *, real *, integer *, real *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int sggrqf_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, real *, integer * , integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sorgrq_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, integer *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SGRQTS tests SGGRQF, which computes the GRQ factorization of an M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. P (input) INTEGER The number of rows of the matrix B. P >= 0. N (input) INTEGER The number of columns of the matrices A and B. N >= 0. A (input) REAL array, dimension (LDA,N) The M-by-N matrix A. AF (output) REAL array, dimension (LDA,N) Details of the GRQ factorization of A and B, as returned by SGGRQF, see SGGRQF for further details. Q (output) REAL array, dimension (LDA,N) The N-by-N orthogonal matrix Q. R (workspace) REAL array, dimension (LDA,MAX(M,N)) LDA (input) INTEGER The leading dimension of the arrays A, AF, R and Q. LDA >= max(M,N). TAUA (output) REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by SGGQRC. B (input) REAL array, dimension (LDB,N) On entry, the P-by-N matrix A. BF (output) REAL array, dimension (LDB,N) Details of the GQR factorization of A and B, as returned by SGGRQF, see SGGRQF for further details. Z (output) REAL array, dimension (LDB,P) The P-by-P orthogonal matrix Z. T (workspace) REAL array, dimension (LDB,max(P,N)) BWK (workspace) REAL array, dimension (LDB,N) LDB (input) INTEGER The leading dimension of the arrays B, BF, Z and T. LDB >= max(P,N). TAUB (output) REAL array, dimension (min(P,N)) The scalar factors of the elementary reflectors, as returned by SGGRQF. WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The dimension of the array WORK, LWORK >= max(M,P,N)**2. RWORK (workspace) REAL array, dimension (M) RESULT (output) REAL array, dimension (4) The test ratios: RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP) RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP) RESULT(3) = norm( I - Q'*Q ) / ( N*ULP ) RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) ===================================================================== Parameter adjustments */ r_dim1 = *lda; r_offset = 1 + r_dim1; r__ -= r_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --taua; bwk_dim1 = *ldb; bwk_offset = 1 + bwk_dim1; bwk -= bwk_offset; t_dim1 = *ldb; t_offset = 1 + t_dim1; t -= t_offset; z_dim1 = *ldb; z_offset = 1 + z_dim1; z__ -= z_offset; bf_dim1 = *ldb; bf_offset = 1 + bf_dim1; bf -= bf_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --taub; --work; --rwork; --result; /* Function Body */ ulp = slamch_("Precision"); unfl = slamch_("Safe minimum"); /* Copy the matrix A to the array AF. */ slacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda); slacpy_("Full", p, n, &b[b_offset], ldb, &bf[bf_offset], ldb); /* Computing MAX */ r__1 = slange_("1", m, n, &a[a_offset], lda, &rwork[1]); anorm = dmax(r__1,unfl); /* Computing MAX */ r__1 = slange_("1", p, n, &b[b_offset], ldb, &rwork[1]); bnorm = dmax(r__1,unfl); /* Factorize the matrices A and B in the arrays AF and BF. */ sggrqf_(m, p, n, &af[af_offset], lda, &taua[1], &bf[bf_offset], ldb, & taub[1], &work[1], lwork, &info); /* Generate the N-by-N matrix Q */ slaset_("Full", n, n, &c_b9, &c_b9, &q[q_offset], lda); if (*m <= *n) { if (*m > 0 && *m < *n) { i__1 = *n - *m; slacpy_("Full", m, &i__1, &af[af_offset], lda, &q[*n - *m + 1 + q_dim1], lda); } if (*m > 1) { i__1 = *m - 1; i__2 = *m - 1; slacpy_("Lower", &i__1, &i__2, &af[(*n - *m + 1) * af_dim1 + 2], lda, &q[*n - *m + 2 + (*n - *m + 1) * q_dim1], lda); } } else { if (*n > 1) { i__1 = *n - 1; i__2 = *n - 1; slacpy_("Lower", &i__1, &i__2, &af[*m - *n + 2 + af_dim1], lda, & q[q_dim1 + 2], lda); } } i__1 = min(*m,*n); sorgrq_(n, n, &i__1, &q[q_offset], lda, &taua[1], &work[1], lwork, &info); /* Generate the P-by-P matrix Z */ slaset_("Full", p, p, &c_b9, &c_b9, &z__[z_offset], ldb); if (*p > 1) { i__1 = *p - 1; slacpy_("Lower", &i__1, n, &bf[bf_dim1 + 2], ldb, &z__[z_dim1 + 2], ldb); } i__1 = min(*p,*n); sorgqr_(p, p, &i__1, &z__[z_offset], ldb, &taub[1], &work[1], lwork, & info); /* Copy R */ slaset_("Full", m, n, &c_b19, &c_b19, &r__[r_offset], lda); if (*m <= *n) { slacpy_("Upper", m, m, &af[(*n - *m + 1) * af_dim1 + 1], lda, &r__[(* n - *m + 1) * r_dim1 + 1], lda); } else { i__1 = *m - *n; slacpy_("Full", &i__1, n, &af[af_offset], lda, &r__[r_offset], lda); slacpy_("Upper", n, n, &af[*m - *n + 1 + af_dim1], lda, &r__[*m - *n + 1 + r_dim1], lda); } /* Copy T */ slaset_("Full", p, n, &c_b19, &c_b19, &t[t_offset], ldb); slacpy_("Upper", p, n, &bf[bf_offset], ldb, &t[t_offset], ldb); /* Compute R - A*Q' */ sgemm_("No transpose", "Transpose", m, n, n, &c_b30, &a[a_offset], lda, & q[q_offset], lda, &c_b31, &r__[r_offset], lda); /* Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) . */ resid = slange_("1", m, n, &r__[r_offset], lda, &rwork[1]); if (anorm > 0.f) { /* Computing MAX */ i__1 = max(1,*m); result[1] = resid / (real) max(i__1,*n) / anorm / ulp; } else { result[1] = 0.f; } /* Compute T*Q - Z'*B */ sgemm_("Transpose", "No transpose", p, n, p, &c_b31, &z__[z_offset], ldb, &b[b_offset], ldb, &c_b19, &bwk[bwk_offset], ldb); sgemm_("No transpose", "No transpose", p, n, n, &c_b31, &t[t_offset], ldb, &q[q_offset], lda, &c_b30, &bwk[bwk_offset], ldb); /* Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) . */ resid = slange_("1", p, n, &bwk[bwk_offset], ldb, &rwork[1]); if (bnorm > 0.f) { /* Computing MAX */ i__1 = max(1,*p); result[2] = resid / (real) max(i__1,*m) / bnorm / ulp; } else { result[2] = 0.f; } /* Compute I - Q*Q' */ slaset_("Full", n, n, &c_b19, &c_b31, &r__[r_offset], lda); ssyrk_("Upper", "No Transpose", n, n, &c_b30, &q[q_offset], lda, &c_b31, & r__[r_offset], lda); /* Compute norm( I - Q'*Q ) / ( N * ULP ) . */ resid = slansy_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]); result[3] = resid / (real) max(1,*n) / ulp; /* Compute I - Z'*Z */ slaset_("Full", p, p, &c_b19, &c_b31, &t[t_offset], ldb); ssyrk_("Upper", "Transpose", p, p, &c_b30, &z__[z_offset], ldb, &c_b31, & t[t_offset], ldb); /* Compute norm( I - Z'*Z ) / ( P*ULP ) . */ resid = slansy_("1", "Upper", p, &t[t_offset], ldb, &rwork[1]); result[4] = resid / (real) max(1,*p) / ulp; return 0; /* End of SGRQTS */ } /* sgrqts_ */