#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zlatrd_(char *uplo, integer *n, integer *nb, doublecomplex *a, integer *lda, doublereal *e, doublecomplex *tau, doublecomplex *w, integer *ldw) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to Hermitian tridiagonal form by a unitary similarity transformation Q' * A * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A. If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by ZHETRD. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The order of the matrix A. NB (input) INTEGER The number of rows and columns to be reduced. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit: if UPLO = 'U', the last NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements above the diagonal with the array TAU, represent the unitary matrix Q as a product of elementary reflectors; if UPLO = 'L', the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements below the diagonal with the array TAU, represent the unitary matrix Q as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). E (output) DOUBLE PRECISION array, dimension (N-1) If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal elements of the last NB columns of the reduced matrix; if UPLO = 'L', E(1:nb) contains the subdiagonal elements of the first NB columns of the reduced matrix. TAU (output) COMPLEX*16 array, dimension (N-1) The scalar factors of the elementary reflectors, stored in TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. See Further Details. W (output) COMPLEX*16 array, dimension (LDW,NB) The n-by-nb matrix W required to update the unreduced part of A. LDW (input) INTEGER The leading dimension of the array W. LDW >= max(1,N). Further Details =============== If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), and tau in TAU(i-1). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and tau in TAU(i). The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a Hermitian rank-2k update of the form: A := A - V*W' - W*V'. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = 'U': if UPLO = 'L': ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i). ===================================================================== Quick return if possible Parameter adjustments */ /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3; doublereal d__1; doublecomplex z__1, z__2, z__3, z__4; /* Local variables */ static integer i__, iw; static doublecomplex alpha; extern logical lsame_(char *, char *); extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern /* Subroutine */ int zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zhemv_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *, integer *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --e; --tau; w_dim1 = *ldw; w_offset = 1 + w_dim1; w -= w_offset; /* Function Body */ if (*n <= 0) { return 0; } if (lsame_(uplo, "U")) { /* Reduce last NB columns of upper triangle */ i__1 = *n - *nb + 1; for (i__ = *n; i__ >= i__1; --i__) { iw = i__ - *n + *nb; if (i__ < *n) { /* Update A(1:i,i) */ i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; i__2 = *n - i__; zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw); i__2 = *n - i__; z__1.r = -1., z__1.i = -0.; zgemv_("No transpose", &i__, &i__2, &z__1, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, & c_b2, &a[i__ * a_dim1 + 1], &c__1); i__2 = *n - i__; zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw); i__2 = *n - i__; zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); i__2 = *n - i__; z__1.r = -1., z__1.i = -0.; zgemv_("No transpose", &i__, &i__2, &z__1, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, & c_b2, &a[i__ * a_dim1 + 1], &c__1); i__2 = *n - i__; zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; } if (i__ > 1) { /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */ i__2 = i__ - 1 + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = i__ - 1; zlarfg_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &tau[i__ - 1]); i__2 = i__ - 1; e[i__2] = alpha.r; i__2 = i__ - 1 + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Compute W(1:i-1,i) */ i__2 = i__ - 1; zhemv_("Upper", &i__2, &c_b2, &a[a_offset], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b1, &w[iw * w_dim1 + 1], &c__1); if (i__ < *n) { i__2 = i__ - 1; i__3 = *n - i__; zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], & c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; z__1.r = -1., z__1.i = -0.; zgemv_("No transpose", &i__2, &i__3, &z__1, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[( i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; z__1.r = -1., z__1.i = -0.; zgemv_("No transpose", &i__2, &i__3, &z__1, &w[(iw + 1) * w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1); } i__2 = i__ - 1; zscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1); z__3.r = -.5, z__3.i = -0.; i__2 = i__ - 1; z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i = z__3.r * tau[i__2].i + z__3.i * tau[i__2].r; i__3 = i__ - 1; zdotc_(&z__4, &i__3, &w[iw * w_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &c__1); z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; alpha.r = z__1.r, alpha.i = z__1.i; i__2 = i__ - 1; zaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * w_dim1 + 1], &c__1); } /* L10: */ } } else { /* Reduce first NB columns of lower triangle */ i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { /* Update A(i:n,i) */ i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; i__2 = i__ - 1; zlacgv_(&i__2, &w[i__ + w_dim1], ldw); i__2 = *n - i__ + 1; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda, &w[i__ + w_dim1], ldw, &c_b2, &a[i__ + i__ * a_dim1], & c__1); i__2 = i__ - 1; zlacgv_(&i__2, &w[i__ + w_dim1], ldw); i__2 = i__ - 1; zlacgv_(&i__2, &a[i__ + a_dim1], lda); i__2 = *n - i__ + 1; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_("No transpose", &i__2, &i__3, &z__1, &w[i__ + w_dim1], ldw, &a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1], & c__1); i__2 = i__ - 1; zlacgv_(&i__2, &a[i__ + a_dim1], lda); i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; if (i__ < *n) { /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */ i__2 = i__ + 1 + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__]); i__2 = i__; e[i__2] = alpha.r; i__2 = i__ + 1 + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Compute W(i+1:n,i) */ i__2 = *n - i__; zhemv_("Lower", &i__2, &c_b2, &a[i__ + 1 + (i__ + 1) * a_dim1] , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &w[i__ + 1 + w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, & c_b1, &w[i__ * w_dim1 + 1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 + a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, & c_b1, &w[i__ * w_dim1 + 1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_("No transpose", &i__2, &i__3, &z__1, &w[i__ + 1 + w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; zscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1); z__3.r = -.5, z__3.i = -0.; i__2 = i__; z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i = z__3.r * tau[i__2].i + z__3.i * tau[i__2].r; i__3 = *n - i__; zdotc_(&z__4, &i__3, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[ i__ + 1 + i__ * a_dim1], &c__1); z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; alpha.r = z__1.r, alpha.i = z__1.i; i__2 = *n - i__; zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[ i__ + 1 + i__ * w_dim1], &c__1); } /* L20: */ } } return 0; /* End of ZLATRD */ } /* zlatrd_ */