#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zlaqhp_(char *uplo, integer *n, doublecomplex *ap, doublereal *s, doublereal *scond, doublereal *amax, char *equed) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZLAQHP equilibrates a Hermitian matrix A using the scaling factors in the vector S. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored. = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The order of the matrix A. N >= 0. AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. On exit, the equilibrated matrix: diag(S) * A * diag(S), in the same storage format as A. S (input) DOUBLE PRECISION array, dimension (N) The scale factors for A. SCOND (input) DOUBLE PRECISION Ratio of the smallest S(i) to the largest S(i). AMAX (input) DOUBLE PRECISION Absolute value of largest matrix entry. EQUED (output) CHARACTER*1 Specifies whether or not equilibration was done. = 'N': No equilibration. = 'Y': Equilibration was done, i.e., A has been replaced by diag(S) * A * diag(S). Internal Parameters =================== THRESH is a threshold value used to decide if scaling should be done based on the ratio of the scaling factors. If SCOND < THRESH, scaling is done. LARGE and SMALL are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If AMAX > LARGE or AMAX < SMALL, scaling is done. ===================================================================== Quick return if possible Parameter adjustments */ /* System generated locals */ integer i__1, i__2, i__3, i__4; doublereal d__1; doublecomplex z__1; /* Local variables */ static integer i__, j, jc; static doublereal cj, large; extern logical lsame_(char *, char *); static doublereal small; extern doublereal dlamch_(char *); --s; --ap; /* Function Body */ if (*n <= 0) { *(unsigned char *)equed = 'N'; return 0; } /* Initialize LARGE and SMALL. */ small = dlamch_("Safe minimum") / dlamch_("Precision"); large = 1. / small; if (*scond >= .1 && *amax >= small && *amax <= large) { /* No equilibration */ *(unsigned char *)equed = 'N'; } else { /* Replace A by diag(S) * A * diag(S). */ if (lsame_(uplo, "U")) { /* Upper triangle of A is stored. */ jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { cj = s[j]; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = jc + i__ - 1; d__1 = cj * s[i__]; i__4 = jc + i__ - 1; z__1.r = d__1 * ap[i__4].r, z__1.i = d__1 * ap[i__4].i; ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; /* L10: */ } i__2 = jc + j - 1; i__3 = jc + j - 1; d__1 = cj * cj * ap[i__3].r; ap[i__2].r = d__1, ap[i__2].i = 0.; jc += j; /* L20: */ } } else { /* Lower triangle of A is stored. */ jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { cj = s[j]; i__2 = jc; i__3 = jc; d__1 = cj * cj * ap[i__3].r; ap[i__2].r = d__1, ap[i__2].i = 0.; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = jc + i__ - j; d__1 = cj * s[i__]; i__4 = jc + i__ - j; z__1.r = d__1 * ap[i__4].r, z__1.i = d__1 * ap[i__4].i; ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; /* L30: */ } jc = jc + *n - j + 1; /* L40: */ } } *(unsigned char *)equed = 'Y'; } return 0; /* End of ZLAQHP */ } /* zlaqhp_ */