#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zlaic1_(integer *job, integer *j, doublecomplex *x, doublereal *sest, doublecomplex *w, doublecomplex *gamma, doublereal * sestpr, doublecomplex *s, doublecomplex *c__) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZLAIC1 applies one step of incremental condition estimation in its simplest version: Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j lower triangular matrix L, such that twonorm(L*x) = sest Then ZLAIC1 computes sestpr, s, c such that the vector [ s*x ] xhat = [ c ] is an approximate singular vector of [ L 0 ] Lhat = [ w' gamma ] in the sense that twonorm(Lhat*xhat) = sestpr. Depending on JOB, an estimate for the largest or smallest singular value is computed. Note that [s c]' and sestpr**2 is an eigenpair of the system diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ] [ conjg(gamma) ] where alpha = conjg(x)'*w. Arguments ========= JOB (input) INTEGER = 1: an estimate for the largest singular value is computed. = 2: an estimate for the smallest singular value is computed. J (input) INTEGER Length of X and W X (input) COMPLEX*16 array, dimension (J) The j-vector x. SEST (input) DOUBLE PRECISION Estimated singular value of j by j matrix L W (input) COMPLEX*16 array, dimension (J) The j-vector w. GAMMA (input) COMPLEX*16 The diagonal element gamma. SESTPR (output) DOUBLE PRECISION Estimated singular value of (j+1) by (j+1) matrix Lhat. S (output) COMPLEX*16 Sine needed in forming xhat. C (output) COMPLEX*16 Cosine needed in forming xhat. ===================================================================== Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ doublereal d__1, d__2; doublecomplex z__1, z__2, z__3, z__4, z__5, z__6; /* Builtin functions */ double z_abs(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *), z_sqrt(doublecomplex *, doublecomplex *); double sqrt(doublereal); void z_div(doublecomplex *, doublecomplex *, doublecomplex *); /* Local variables */ static doublereal b, t, s1, s2, scl, eps, tmp; static doublecomplex sine; static doublereal test, zeta1, zeta2; static doublecomplex alpha; static doublereal norma; extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *); static doublereal absgam, absalp; static doublecomplex cosine; static doublereal absest; --w; --x; /* Function Body */ eps = dlamch_("Epsilon"); zdotc_(&z__1, j, &x[1], &c__1, &w[1], &c__1); alpha.r = z__1.r, alpha.i = z__1.i; absalp = z_abs(&alpha); absgam = z_abs(gamma); absest = abs(*sest); if (*job == 1) { /* Estimating largest singular value special cases */ if (*sest == 0.) { s1 = max(absgam,absalp); if (s1 == 0.) { s->r = 0., s->i = 0.; c__->r = 1., c__->i = 0.; *sestpr = 0.; } else { z__1.r = alpha.r / s1, z__1.i = alpha.i / s1; s->r = z__1.r, s->i = z__1.i; z__1.r = gamma->r / s1, z__1.i = gamma->i / s1; c__->r = z__1.r, c__->i = z__1.i; d_cnjg(&z__4, s); z__3.r = s->r * z__4.r - s->i * z__4.i, z__3.i = s->r * z__4.i + s->i * z__4.r; d_cnjg(&z__6, c__); z__5.r = c__->r * z__6.r - c__->i * z__6.i, z__5.i = c__->r * z__6.i + c__->i * z__6.r; z__2.r = z__3.r + z__5.r, z__2.i = z__3.i + z__5.i; z_sqrt(&z__1, &z__2); tmp = z__1.r; z__1.r = s->r / tmp, z__1.i = s->i / tmp; s->r = z__1.r, s->i = z__1.i; z__1.r = c__->r / tmp, z__1.i = c__->i / tmp; c__->r = z__1.r, c__->i = z__1.i; *sestpr = s1 * tmp; } return 0; } else if (absgam <= eps * absest) { s->r = 1., s->i = 0.; c__->r = 0., c__->i = 0.; tmp = max(absest,absalp); s1 = absest / tmp; s2 = absalp / tmp; *sestpr = tmp * sqrt(s1 * s1 + s2 * s2); return 0; } else if (absalp <= eps * absest) { s1 = absgam; s2 = absest; if (s1 <= s2) { s->r = 1., s->i = 0.; c__->r = 0., c__->i = 0.; *sestpr = s2; } else { s->r = 0., s->i = 0.; c__->r = 1., c__->i = 0.; *sestpr = s1; } return 0; } else if (absest <= eps * absalp || absest <= eps * absgam) { s1 = absgam; s2 = absalp; if (s1 <= s2) { tmp = s1 / s2; scl = sqrt(tmp * tmp + 1.); *sestpr = s2 * scl; z__2.r = alpha.r / s2, z__2.i = alpha.i / s2; z__1.r = z__2.r / scl, z__1.i = z__2.i / scl; s->r = z__1.r, s->i = z__1.i; z__2.r = gamma->r / s2, z__2.i = gamma->i / s2; z__1.r = z__2.r / scl, z__1.i = z__2.i / scl; c__->r = z__1.r, c__->i = z__1.i; } else { tmp = s2 / s1; scl = sqrt(tmp * tmp + 1.); *sestpr = s1 * scl; z__2.r = alpha.r / s1, z__2.i = alpha.i / s1; z__1.r = z__2.r / scl, z__1.i = z__2.i / scl; s->r = z__1.r, s->i = z__1.i; z__2.r = gamma->r / s1, z__2.i = gamma->i / s1; z__1.r = z__2.r / scl, z__1.i = z__2.i / scl; c__->r = z__1.r, c__->i = z__1.i; } return 0; } else { /* normal case */ zeta1 = absalp / absest; zeta2 = absgam / absest; b = (1. - zeta1 * zeta1 - zeta2 * zeta2) * .5; d__1 = zeta1 * zeta1; c__->r = d__1, c__->i = 0.; if (b > 0.) { d__1 = b * b; z__4.r = d__1 + c__->r, z__4.i = c__->i; z_sqrt(&z__3, &z__4); z__2.r = b + z__3.r, z__2.i = z__3.i; z_div(&z__1, c__, &z__2); t = z__1.r; } else { d__1 = b * b; z__3.r = d__1 + c__->r, z__3.i = c__->i; z_sqrt(&z__2, &z__3); z__1.r = z__2.r - b, z__1.i = z__2.i; t = z__1.r; } z__3.r = alpha.r / absest, z__3.i = alpha.i / absest; z__2.r = -z__3.r, z__2.i = -z__3.i; z__1.r = z__2.r / t, z__1.i = z__2.i / t; sine.r = z__1.r, sine.i = z__1.i; z__3.r = gamma->r / absest, z__3.i = gamma->i / absest; z__2.r = -z__3.r, z__2.i = -z__3.i; d__1 = t + 1.; z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1; cosine.r = z__1.r, cosine.i = z__1.i; d_cnjg(&z__4, &sine); z__3.r = sine.r * z__4.r - sine.i * z__4.i, z__3.i = sine.r * z__4.i + sine.i * z__4.r; d_cnjg(&z__6, &cosine); z__5.r = cosine.r * z__6.r - cosine.i * z__6.i, z__5.i = cosine.r * z__6.i + cosine.i * z__6.r; z__2.r = z__3.r + z__5.r, z__2.i = z__3.i + z__5.i; z_sqrt(&z__1, &z__2); tmp = z__1.r; z__1.r = sine.r / tmp, z__1.i = sine.i / tmp; s->r = z__1.r, s->i = z__1.i; z__1.r = cosine.r / tmp, z__1.i = cosine.i / tmp; c__->r = z__1.r, c__->i = z__1.i; *sestpr = sqrt(t + 1.) * absest; return 0; } } else if (*job == 2) { /* Estimating smallest singular value special cases */ if (*sest == 0.) { *sestpr = 0.; if (max(absgam,absalp) == 0.) { sine.r = 1., sine.i = 0.; cosine.r = 0., cosine.i = 0.; } else { d_cnjg(&z__2, gamma); z__1.r = -z__2.r, z__1.i = -z__2.i; sine.r = z__1.r, sine.i = z__1.i; d_cnjg(&z__1, &alpha); cosine.r = z__1.r, cosine.i = z__1.i; } /* Computing MAX */ d__1 = z_abs(&sine), d__2 = z_abs(&cosine); s1 = max(d__1,d__2); z__1.r = sine.r / s1, z__1.i = sine.i / s1; s->r = z__1.r, s->i = z__1.i; z__1.r = cosine.r / s1, z__1.i = cosine.i / s1; c__->r = z__1.r, c__->i = z__1.i; d_cnjg(&z__4, s); z__3.r = s->r * z__4.r - s->i * z__4.i, z__3.i = s->r * z__4.i + s->i * z__4.r; d_cnjg(&z__6, c__); z__5.r = c__->r * z__6.r - c__->i * z__6.i, z__5.i = c__->r * z__6.i + c__->i * z__6.r; z__2.r = z__3.r + z__5.r, z__2.i = z__3.i + z__5.i; z_sqrt(&z__1, &z__2); tmp = z__1.r; z__1.r = s->r / tmp, z__1.i = s->i / tmp; s->r = z__1.r, s->i = z__1.i; z__1.r = c__->r / tmp, z__1.i = c__->i / tmp; c__->r = z__1.r, c__->i = z__1.i; return 0; } else if (absgam <= eps * absest) { s->r = 0., s->i = 0.; c__->r = 1., c__->i = 0.; *sestpr = absgam; return 0; } else if (absalp <= eps * absest) { s1 = absgam; s2 = absest; if (s1 <= s2) { s->r = 0., s->i = 0.; c__->r = 1., c__->i = 0.; *sestpr = s1; } else { s->r = 1., s->i = 0.; c__->r = 0., c__->i = 0.; *sestpr = s2; } return 0; } else if (absest <= eps * absalp || absest <= eps * absgam) { s1 = absgam; s2 = absalp; if (s1 <= s2) { tmp = s1 / s2; scl = sqrt(tmp * tmp + 1.); *sestpr = absest * (tmp / scl); d_cnjg(&z__4, gamma); z__3.r = z__4.r / s2, z__3.i = z__4.i / s2; z__2.r = -z__3.r, z__2.i = -z__3.i; z__1.r = z__2.r / scl, z__1.i = z__2.i / scl; s->r = z__1.r, s->i = z__1.i; d_cnjg(&z__3, &alpha); z__2.r = z__3.r / s2, z__2.i = z__3.i / s2; z__1.r = z__2.r / scl, z__1.i = z__2.i / scl; c__->r = z__1.r, c__->i = z__1.i; } else { tmp = s2 / s1; scl = sqrt(tmp * tmp + 1.); *sestpr = absest / scl; d_cnjg(&z__4, gamma); z__3.r = z__4.r / s1, z__3.i = z__4.i / s1; z__2.r = -z__3.r, z__2.i = -z__3.i; z__1.r = z__2.r / scl, z__1.i = z__2.i / scl; s->r = z__1.r, s->i = z__1.i; d_cnjg(&z__3, &alpha); z__2.r = z__3.r / s1, z__2.i = z__3.i / s1; z__1.r = z__2.r / scl, z__1.i = z__2.i / scl; c__->r = z__1.r, c__->i = z__1.i; } return 0; } else { /* normal case */ zeta1 = absalp / absest; zeta2 = absgam / absest; /* Computing MAX */ d__1 = zeta1 * zeta1 + 1. + zeta1 * zeta2, d__2 = zeta1 * zeta2 + zeta2 * zeta2; norma = max(d__1,d__2); /* See if root is closer to zero or to ONE */ test = (zeta1 - zeta2) * 2. * (zeta1 + zeta2) + 1.; if (test >= 0.) { /* root is close to zero, compute directly */ b = (zeta1 * zeta1 + zeta2 * zeta2 + 1.) * .5; d__1 = zeta2 * zeta2; c__->r = d__1, c__->i = 0.; d__2 = b * b; z__2.r = d__2 - c__->r, z__2.i = -c__->i; d__1 = b + sqrt(z_abs(&z__2)); z__1.r = c__->r / d__1, z__1.i = c__->i / d__1; t = z__1.r; z__2.r = alpha.r / absest, z__2.i = alpha.i / absest; d__1 = 1. - t; z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1; sine.r = z__1.r, sine.i = z__1.i; z__3.r = gamma->r / absest, z__3.i = gamma->i / absest; z__2.r = -z__3.r, z__2.i = -z__3.i; z__1.r = z__2.r / t, z__1.i = z__2.i / t; cosine.r = z__1.r, cosine.i = z__1.i; *sestpr = sqrt(t + eps * 4. * eps * norma) * absest; } else { /* root is closer to ONE, shift by that amount */ b = (zeta2 * zeta2 + zeta1 * zeta1 - 1.) * .5; d__1 = zeta1 * zeta1; c__->r = d__1, c__->i = 0.; if (b >= 0.) { z__2.r = -c__->r, z__2.i = -c__->i; d__1 = b * b; z__5.r = d__1 + c__->r, z__5.i = c__->i; z_sqrt(&z__4, &z__5); z__3.r = b + z__4.r, z__3.i = z__4.i; z_div(&z__1, &z__2, &z__3); t = z__1.r; } else { d__1 = b * b; z__3.r = d__1 + c__->r, z__3.i = c__->i; z_sqrt(&z__2, &z__3); z__1.r = b - z__2.r, z__1.i = -z__2.i; t = z__1.r; } z__3.r = alpha.r / absest, z__3.i = alpha.i / absest; z__2.r = -z__3.r, z__2.i = -z__3.i; z__1.r = z__2.r / t, z__1.i = z__2.i / t; sine.r = z__1.r, sine.i = z__1.i; z__3.r = gamma->r / absest, z__3.i = gamma->i / absest; z__2.r = -z__3.r, z__2.i = -z__3.i; d__1 = t + 1.; z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1; cosine.r = z__1.r, cosine.i = z__1.i; *sestpr = sqrt(t + 1. + eps * 4. * eps * norma) * absest; } d_cnjg(&z__4, &sine); z__3.r = sine.r * z__4.r - sine.i * z__4.i, z__3.i = sine.r * z__4.i + sine.i * z__4.r; d_cnjg(&z__6, &cosine); z__5.r = cosine.r * z__6.r - cosine.i * z__6.i, z__5.i = cosine.r * z__6.i + cosine.i * z__6.r; z__2.r = z__3.r + z__5.r, z__2.i = z__3.i + z__5.i; z_sqrt(&z__1, &z__2); tmp = z__1.r; z__1.r = sine.r / tmp, z__1.i = sine.i / tmp; s->r = z__1.r, s->i = z__1.i; z__1.r = cosine.r / tmp, z__1.i = cosine.i / tmp; c__->r = z__1.r, c__->i = z__1.i; return 0; } } return 0; /* End of ZLAIC1 */ } /* zlaic1_ */