#include "blaswrap.h" /* zlaed0.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__9 = 9; static integer c__0 = 0; static integer c__2 = 2; static integer c__1 = 1; /* Subroutine */ int zlaed0_(integer *qsiz, integer *n, doublereal *d__, doublereal *e, doublecomplex *q, integer *ldq, doublecomplex *qstore, integer *ldqs, doublereal *rwork, integer *iwork, integer *info) { /* System generated locals */ integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2; doublereal d__1; /* Builtin functions */ double log(doublereal); integer pow_ii(integer *, integer *); /* Local variables */ static integer i__, j, k, ll, iq, lgn, msd2, smm1, spm1, spm2; static doublereal temp; static integer curr, iperm; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer indxq, iwrem, iqptr, tlvls; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaed7_(integer *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublecomplex *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublecomplex *, doublereal *, integer *, integer *) ; static integer igivcl; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int zlacrm_(integer *, integer *, doublecomplex *, integer *, doublereal *, integer *, doublecomplex *, integer *, doublereal *); static integer igivnm, submat, curprb, subpbs, igivpt; extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *); static integer curlvl, matsiz, iprmpt, smlsiz; /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= Using the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix. Arguments ========= QSIZ (input) INTEGER The dimension of the unitary matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D (input/output) DOUBLE PRECISION array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, the eigenvalues in ascending order. E (input/output) DOUBLE PRECISION array, dimension (N-1) On entry, the off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Q (input/output) COMPLEX*16 array, dimension (LDQ,N) On entry, Q must contain an QSIZ x N matrix whose columns unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N). IWORK (workspace) INTEGER array, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg( N ) = smallest integer k such that 2^k >= N ) RWORK (workspace) DOUBLE PRECISION array, dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest integer k such that 2^k >= N ) QSTORE (workspace) COMPLEX*16 array, dimension (LDQS, N) Used to store parts of the eigenvector matrix when the updating matrix multiplies take place. LDQS (input) INTEGER The leading dimension of the array QSTORE. LDQS >= max(1,N). INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). ===================================================================== Warning: N could be as big as QSIZ! Test the input parameters. Parameter adjustments */ --d__; --e; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; qstore_dim1 = *ldqs; qstore_offset = 1 + qstore_dim1; qstore -= qstore_offset; --rwork; --iwork; /* Function Body */ *info = 0; /* IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN INFO = -1 ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) ) $ THEN */ if (*qsiz < max(0,*n)) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*ldq < max(1,*n)) { *info = -6; } else if (*ldqs < max(1,*n)) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("ZLAED0", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } smlsiz = ilaenv_(&c__9, "ZLAED0", " ", &c__0, &c__0, &c__0, &c__0, ( ftnlen)6, (ftnlen)1); /* Determine the size and placement of the submatrices, and save in the leading elements of IWORK. */ iwork[1] = *n; subpbs = 1; tlvls = 0; L10: if (iwork[subpbs] > smlsiz) { for (j = subpbs; j >= 1; --j) { iwork[j * 2] = (iwork[j] + 1) / 2; iwork[(j << 1) - 1] = iwork[j] / 2; /* L20: */ } ++tlvls; subpbs <<= 1; goto L10; } i__1 = subpbs; for (j = 2; j <= i__1; ++j) { iwork[j] += iwork[j - 1]; /* L30: */ } /* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 using rank-1 modifications (cuts). */ spm1 = subpbs - 1; i__1 = spm1; for (i__ = 1; i__ <= i__1; ++i__) { submat = iwork[i__] + 1; smm1 = submat - 1; d__[smm1] -= (d__1 = e[smm1], abs(d__1)); d__[submat] -= (d__1 = e[smm1], abs(d__1)); /* L40: */ } indxq = (*n << 2) + 3; /* Set up workspaces for eigenvalues only/accumulate new vectors routine */ temp = log((doublereal) (*n)) / log(2.); lgn = (integer) temp; if (pow_ii(&c__2, &lgn) < *n) { ++lgn; } if (pow_ii(&c__2, &lgn) < *n) { ++lgn; } iprmpt = indxq + *n + 1; iperm = iprmpt + *n * lgn; iqptr = iperm + *n * lgn; igivpt = iqptr + *n + 2; igivcl = igivpt + *n * lgn; igivnm = 1; iq = igivnm + (*n << 1) * lgn; /* Computing 2nd power */ i__1 = *n; iwrem = iq + i__1 * i__1 + 1; /* Initialize pointers */ i__1 = subpbs; for (i__ = 0; i__ <= i__1; ++i__) { iwork[iprmpt + i__] = 1; iwork[igivpt + i__] = 1; /* L50: */ } iwork[iqptr] = 1; /* Solve each submatrix eigenproblem at the bottom of the divide and conquer tree. */ curr = 0; i__1 = spm1; for (i__ = 0; i__ <= i__1; ++i__) { if (i__ == 0) { submat = 1; matsiz = iwork[1]; } else { submat = iwork[i__] + 1; matsiz = iwork[i__ + 1] - iwork[i__]; } ll = iq - 1 + iwork[iqptr + curr]; dsteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, & rwork[1], info); zlacrm_(qsiz, &matsiz, &q[submat * q_dim1 + 1], ldq, &rwork[ll], & matsiz, &qstore[submat * qstore_dim1 + 1], ldqs, &rwork[iwrem] ); /* Computing 2nd power */ i__2 = matsiz; iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2; ++curr; if (*info > 0) { *info = submat * (*n + 1) + submat + matsiz - 1; return 0; } k = 1; i__2 = iwork[i__ + 1]; for (j = submat; j <= i__2; ++j) { iwork[indxq + j] = k; ++k; /* L60: */ } /* L70: */ } /* Successively merge eigensystems of adjacent submatrices into eigensystem for the corresponding larger matrix. while ( SUBPBS > 1 ) */ curlvl = 1; L80: if (subpbs > 1) { spm2 = subpbs - 2; i__1 = spm2; for (i__ = 0; i__ <= i__1; i__ += 2) { if (i__ == 0) { submat = 1; matsiz = iwork[2]; msd2 = iwork[1]; curprb = 0; } else { submat = iwork[i__] + 1; matsiz = iwork[i__ + 2] - iwork[i__]; msd2 = matsiz / 2; ++curprb; } /* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) into an eigensystem of size MATSIZ. ZLAED7 handles the case when the eigenvectors of a full or band Hermitian matrix (which was reduced to tridiagonal form) are desired. I am free to use Q as a valuable working space until Loop 150. */ zlaed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[ submat], &qstore[submat * qstore_dim1 + 1], ldqs, &e[ submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], & iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[ igivpt], &iwork[igivcl], &rwork[igivnm], &q[submat * q_dim1 + 1], &rwork[iwrem], &iwork[subpbs + 1], info); if (*info > 0) { *info = submat * (*n + 1) + submat + matsiz - 1; return 0; } iwork[i__ / 2 + 1] = iwork[i__ + 2]; /* L90: */ } subpbs /= 2; ++curlvl; goto L80; } /* end while Re-merge the eigenvalues/vectors which were deflated at the final merge step. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { j = iwork[indxq + i__]; rwork[i__] = d__[j]; zcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1] , &c__1); /* L100: */ } dcopy_(n, &rwork[1], &c__1, &d__[1], &c__1); return 0; /* End of ZLAED0 */ } /* zlaed0_ */