#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zgeqpf_(integer *m, integer *n, doublecomplex *a, integer *lda, integer *jpvt, doublecomplex *tau, doublecomplex *work, doublereal *rwork, integer *info) { /* -- LAPACK deprecated driver routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= This routine is deprecated and has been replaced by routine ZGEQP3. ZGEQPF computes a QR factorization with column pivoting of a complex M-by-N matrix A: A*P = Q*R. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0 A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper triangular matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(m,n) elementary reflectors. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). JPVT (input/output) INTEGER array, dimension (N) On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted to the front of A*P (a leading column); if JPVT(i) = 0, the i-th column of A is a free column. On exit, if JPVT(i) = k, then the i-th column of A*P was the k-th column of A. TAU (output) COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors. WORK (workspace) COMPLEX*16 array, dimension (N) RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n) Each H(i) has the form H = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). The matrix P is represented in jpvt as follows: If jpvt(j) = i then the jth column of P is the ith canonical unit vector. Partial column norm updating strategy modified by Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia. June 2006. For more details see LAPACK Working Note 176. ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1, d__2; doublecomplex z__1; /* Builtin functions */ double sqrt(doublereal); void d_cnjg(doublecomplex *, doublecomplex *); double z_abs(doublecomplex *); /* Local variables */ static integer i__, j, ma, mn; static doublecomplex aii; static integer pvt; static doublereal temp, temp2, tol3z; static integer itemp; extern /* Subroutine */ int zlarf_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zgeqr2_( integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_( char *); extern /* Subroutine */ int zunm2r_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *), zlarfg_( integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --jpvt; --tau; --work; --rwork; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("ZGEQPF", &i__1); return 0; } mn = min(*m,*n); tol3z = sqrt(dlamch_("Epsilon")); /* Move initial columns up front */ itemp = 1; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (jpvt[i__] != 0) { if (i__ != itemp) { zswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1], &c__1); jpvt[i__] = jpvt[itemp]; jpvt[itemp] = i__; } else { jpvt[i__] = i__; } ++itemp; } else { jpvt[i__] = i__; } /* L10: */ } --itemp; /* Compute the QR factorization and update remaining columns */ if (itemp > 0) { ma = min(itemp,*m); zgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info); if (ma < *n) { i__1 = *n - ma; zunm2r_("Left", "Conjugate transpose", m, &i__1, &ma, &a[a_offset] , lda, &tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], info); } } if (itemp < mn) { /* Initialize partial column norms. The first n elements of work store the exact column norms. */ i__1 = *n; for (i__ = itemp + 1; i__ <= i__1; ++i__) { i__2 = *m - itemp; rwork[i__] = dznrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1); rwork[*n + i__] = rwork[i__]; /* L20: */ } /* Compute factorization */ i__1 = mn; for (i__ = itemp + 1; i__ <= i__1; ++i__) { /* Determine ith pivot column and swap if necessary */ i__2 = *n - i__ + 1; pvt = i__ - 1 + idamax_(&i__2, &rwork[i__], &c__1); if (pvt != i__) { zswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], & c__1); itemp = jpvt[pvt]; jpvt[pvt] = jpvt[i__]; jpvt[i__] = itemp; rwork[pvt] = rwork[i__]; rwork[*n + pvt] = rwork[*n + i__]; } /* Generate elementary reflector H(i) */ i__2 = i__ + i__ * a_dim1; aii.r = a[i__2].r, aii.i = a[i__2].i; i__2 = *m - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; zlarfg_(&i__2, &aii, &a[min(i__3,*m) + i__ * a_dim1], &c__1, &tau[ i__]); i__2 = i__ + i__ * a_dim1; a[i__2].r = aii.r, a[i__2].i = aii.i; if (i__ < *n) { /* Apply H(i) to A(i:m,i+1:n) from the left */ i__2 = i__ + i__ * a_dim1; aii.r = a[i__2].r, aii.i = a[i__2].i; i__2 = i__ + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; i__2 = *m - i__ + 1; i__3 = *n - i__; d_cnjg(&z__1, &tau[i__]); zlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, & z__1, &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); i__2 = i__ + i__ * a_dim1; a[i__2].r = aii.r, a[i__2].i = aii.i; } /* Update partial column norms */ i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { if (rwork[j] != 0.) { /* NOTE: The following 4 lines follow from the analysis in Lapack Working Note 176. */ temp = z_abs(&a[i__ + j * a_dim1]) / rwork[j]; /* Computing MAX */ d__1 = 0., d__2 = (temp + 1.) * (1. - temp); temp = max(d__1,d__2); /* Computing 2nd power */ d__1 = rwork[j] / rwork[*n + j]; temp2 = temp * (d__1 * d__1); if (temp2 <= tol3z) { if (*m - i__ > 0) { i__3 = *m - i__; rwork[j] = dznrm2_(&i__3, &a[i__ + 1 + j * a_dim1] , &c__1); rwork[*n + j] = rwork[j]; } else { rwork[j] = 0.; rwork[*n + j] = 0.; } } else { rwork[j] *= sqrt(temp); } } /* L30: */ } /* L40: */ } } return 0; /* End of ZGEQPF */ } /* zgeqpf_ */