#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zgegs_(char *jobvsl, char *jobvsr, integer *n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, doublecomplex *alpha, doublecomplex *beta, doublecomplex *vsl, integer *ldvsl, doublecomplex *vsr, integer *ldvsr, doublecomplex * work, integer *lwork, doublereal *rwork, integer *info ) { /* -- LAPACK driver routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= This routine is deprecated and has been replaced by routine ZGGES. ZGEGS computes the eigenvalues, Schur form, and, optionally, the left and or/right Schur vectors of a complex matrix pair (A,B). Given two square matrices A and B, the generalized Schur factorization has the form A = Q*S*Z**H, B = Q*T*Z**H where Q and Z are unitary matrices and S and T are upper triangular. The columns of Q are the left Schur vectors and the columns of Z are the right Schur vectors. If only the eigenvalues of (A,B) are needed, the driver routine ZGEGV should be used instead. See ZGEGV for a description of the eigenvalues of the generalized nonsymmetric eigenvalue problem (GNEP). Arguments ========= JOBVSL (input) CHARACTER*1 = 'N': do not compute the left Schur vectors; = 'V': compute the left Schur vectors (returned in VSL). JOBVSR (input) CHARACTER*1 = 'N': do not compute the right Schur vectors; = 'V': compute the right Schur vectors (returned in VSR). N (input) INTEGER The order of the matrices A, B, VSL, and VSR. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA, N) On entry, the matrix A. On exit, the upper triangular matrix S from the generalized Schur factorization. LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) COMPLEX*16 array, dimension (LDB, N) On entry, the matrix B. On exit, the upper triangular matrix T from the generalized Schur factorization. LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). ALPHA (output) COMPLEX*16 array, dimension (N) The complex scalars alpha that define the eigenvalues of GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur form of A. BETA (output) COMPLEX*16 array, dimension (N) The non-negative real scalars beta that define the eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element of the triangular factor T. Together, the quantities alpha = ALPHA(j) and beta = BETA(j) represent the j-th eigenvalue of the matrix pair (A,B), in one of the forms lambda = alpha/beta or mu = beta/alpha. Since either lambda or mu may overflow, they should not, in general, be computed. VSL (output) COMPLEX*16 array, dimension (LDVSL,N) If JOBVSL = 'V', the matrix of left Schur vectors Q. Not referenced if JOBVSL = 'N'. LDVSL (input) INTEGER The leading dimension of the matrix VSL. LDVSL >= 1, and if JOBVSL = 'V', LDVSL >= N. VSR (output) COMPLEX*16 array, dimension (LDVSR,N) If JOBVSR = 'V', the matrix of right Schur vectors Z. Not referenced if JOBVSR = 'N'. LDVSR (input) INTEGER The leading dimension of the matrix VSR. LDVSR >= 1, and if JOBVSR = 'V', LDVSR >= N. WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,2*N). For good performance, LWORK must generally be larger. To compute the optimal value of LWORK, call ILAENV to get blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.) Then compute: NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR; the optimal LWORK is N*(NB+1). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace) DOUBLE PRECISION array, dimension (3*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. =1,...,N: The QZ iteration failed. (A,B) are not in Schur form, but ALPHA(j) and BETA(j) should be correct for j=INFO+1,...,N. > N: errors that usually indicate LAPACK problems: =N+1: error return from ZGGBAL =N+2: error return from ZGEQRF =N+3: error return from ZUNMQR =N+4: error return from ZUNGQR =N+5: error return from ZGGHRD =N+6: error return from ZHGEQZ (other than failed iteration) =N+7: error return from ZGGBAK (computing VSL) =N+8: error return from ZGGBAK (computing VSR) =N+9: error return from ZLASCL (various places) ===================================================================== Decode the input arguments Parameter adjustments */ /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2, i__3; /* Local variables */ static integer nb, nb1, nb2, nb3, ihi, ilo; static doublereal eps, anrm, bnrm; static integer itau, lopt; extern logical lsame_(char *, char *); static integer ileft, iinfo, icols; static logical ilvsl; static integer iwork; static logical ilvsr; static integer irows; extern doublereal dlamch_(char *); extern /* Subroutine */ int zggbak_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublecomplex *, integer *, integer *), zggbal_(char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer * , integer *, doublereal *, doublereal *, doublereal *, integer *); static logical ilascl, ilbscl; static doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); static doublereal bignum; static integer ijobvl, iright; extern /* Subroutine */ int zgghrd_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer * ), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *); static integer ijobvr; extern /* Subroutine */ int zgeqrf_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer * ); static doublereal anrmto; static integer lwkmin; static doublereal bnrmto; extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zhgeqz_( char *, char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *); static doublereal smlnum; static integer irwork, lwkopt; static logical lquery; extern /* Subroutine */ int zungqr_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alpha; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1; vsr -= vsr_offset; --work; --rwork; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } /* Test the input arguments Computing MAX */ i__1 = *n << 1; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1].r = (doublereal) lwkopt, work[1].i = 0.; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -11; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -13; } else if (*lwork < lwkmin && ! lquery) { *info = -15; } if (*info == 0) { nb1 = ilaenv_(&c__1, "ZGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb2 = ilaenv_(&c__1, "ZUNMQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); nb3 = ilaenv_(&c__1, "ZUNGQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); lopt = *n * (nb + 1); work[1].r = (doublereal) lopt, work[1].i = 0.; } if (*info != 0) { i__1 = -(*info); xerbla_("ZGEGS ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = dlamch_("E") * dlamch_("B"); safmin = dlamch_("S"); smlnum = *n * safmin / eps; bignum = 1. / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = zlange_("M", n, n, &a[a_offset], lda, &rwork[1]); ilascl = FALSE_; if (anrm > 0. && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { zlascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = zlange_("M", n, n, &b[b_offset], ldb, &rwork[1]); ilbscl = FALSE_; if (bnrm > 0. && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { zlascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } /* Permute the matrix to make it more nearly triangular */ ileft = 1; iright = *n + 1; irwork = iright + *n; iwork = 1; zggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[ ileft], &rwork[iright], &rwork[irwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L10; } /* Reduce B to triangular form, and initialize VSL and/or VSR */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = iwork; iwork = itau + irows; i__1 = *lwork + 1 - iwork; zgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L10; } i__1 = *lwork + 1 - iwork; zunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, & iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L10; } if (ilvsl) { zlaset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl); i__1 = irows - 1; i__2 = irows - 1; zlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo + 1 + ilo * vsl_dim1], ldvsl); i__1 = *lwork + 1 - iwork; zungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, & work[itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L10; } } if (ilvsr) { zlaset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form */ zgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo); if (iinfo != 0) { *info = *n + 5; goto L10; } /* Perform QZ algorithm, computing Schur vectors if desired */ iwork = itau; i__1 = *lwork + 1 - iwork; zhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, & vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &rwork[irwork], & iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L10; } /* Apply permutation to VSL and VSR */ if (ilvsl) { zggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsl[vsl_offset], ldvsl, &iinfo); if (iinfo != 0) { *info = *n + 7; goto L10; } } if (ilvsr) { zggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsr[vsr_offset], ldvsr, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L10; } } /* Undo scaling */ if (ilascl) { zlascl_("U", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } zlascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alpha[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } if (ilbscl) { zlascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } zlascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } L10: work[1].r = (doublereal) lwkopt, work[1].i = 0.; return 0; /* End of ZGEGS */ } /* zgegs_ */