#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int slagtm_(char *trans, integer *n, integer *nrhs, real * alpha, real *dl, real *d__, real *du, real *x, integer *ldx, real * beta, real *b, integer *ldb) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SLAGTM performs a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of order N, B and X are N by NRHS matrices, and alpha and beta are real scalars, each of which may be 0., 1., or -1. Arguments ========= TRANS (input) CHARACTER*1 Specifies the operation applied to A. = 'N': No transpose, B := alpha * A * X + beta * B = 'T': Transpose, B := alpha * A'* X + beta * B = 'C': Conjugate transpose = Transpose N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B. ALPHA (input) REAL The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, it is assumed to be 0. DL (input) REAL array, dimension (N-1) The (n-1) sub-diagonal elements of T. D (input) REAL array, dimension (N) The diagonal elements of T. DU (input) REAL array, dimension (N-1) The (n-1) super-diagonal elements of T. X (input) REAL array, dimension (LDX,NRHS) The N by NRHS matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(N,1). BETA (input) REAL The scalar beta. BETA must be 0., 1., or -1.; otherwise, it is assumed to be 1. B (input/output) REAL array, dimension (LDB,NRHS) On entry, the N by NRHS matrix B. On exit, B is overwritten by the matrix expression B := alpha * A * X + beta * B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(N,1). ===================================================================== Parameter adjustments */ /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2; /* Local variables */ static integer i__, j; extern logical lsame_(char *, char *); --dl; --d__; --du; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ if (*n == 0) { return 0; } /* Multiply B by BETA if BETA.NE.1. */ if (*beta == 0.f) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = 0.f; /* L10: */ } /* L20: */ } } else if (*beta == -1.f) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = -b[i__ + j * b_dim1]; /* L30: */ } /* L40: */ } } if (*alpha == 1.f) { if (lsame_(trans, "N")) { /* Compute B := B + A*X */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { if (*n == 1) { b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1]; } else { b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j * x_dim1 + 1] + du[1] * x[j * x_dim1 + 2]; b[*n + j * b_dim1] = b[*n + j * b_dim1] + dl[*n - 1] * x[* n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1] ; i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + dl[i__ - 1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[ i__ + j * x_dim1] + du[i__] * x[i__ + 1 + j * x_dim1]; /* L50: */ } } /* L60: */ } } else { /* Compute B := B + A'*X */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { if (*n == 1) { b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1]; } else { b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j * x_dim1 + 1] + dl[1] * x[j * x_dim1 + 2]; b[*n + j * b_dim1] = b[*n + j * b_dim1] + du[*n - 1] * x[* n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1] ; i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + du[i__ - 1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[ i__ + j * x_dim1] + dl[i__] * x[i__ + 1 + j * x_dim1]; /* L70: */ } } /* L80: */ } } } else if (*alpha == -1.f) { if (lsame_(trans, "N")) { /* Compute B := B - A*X */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { if (*n == 1) { b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1]; } else { b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j * x_dim1 + 1] - du[1] * x[j * x_dim1 + 2]; b[*n + j * b_dim1] = b[*n + j * b_dim1] - dl[*n - 1] * x[* n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1] ; i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - dl[i__ - 1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[ i__ + j * x_dim1] - du[i__] * x[i__ + 1 + j * x_dim1]; /* L90: */ } } /* L100: */ } } else { /* Compute B := B - A'*X */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { if (*n == 1) { b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1]; } else { b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j * x_dim1 + 1] - dl[1] * x[j * x_dim1 + 2]; b[*n + j * b_dim1] = b[*n + j * b_dim1] - du[*n - 1] * x[* n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1] ; i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - du[i__ - 1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[ i__ + j * x_dim1] - dl[i__] * x[i__ + 1 + j * x_dim1]; /* L110: */ } } /* L120: */ } } } return 0; /* End of SLAGTM */ } /* slagtm_ */