#include "blaswrap.h" /* slaed6.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Subroutine */ int slaed6_(integer *kniter, logical *orgati, real *rho, real *d__, real *z__, real *finit, real *tau, integer *info) { /* System generated locals */ integer i__1; real r__1, r__2, r__3, r__4; /* Builtin functions */ double sqrt(doublereal), log(doublereal), pow_ri(real *, integer *); /* Local variables */ static real a, b, c__, f; static integer i__; static real fc, df, ddf, lbd, eta, ubd, eps, base; static integer iter; static real temp, temp1, temp2, temp3, temp4; static logical scale; static integer niter; static real small1, small2, sminv1, sminv2, dscale[3], sclfac; extern doublereal slamch_(char *); static real zscale[3], erretm, sclinv; /* -- LAPACK routine (version 3.1.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. February 2007 Purpose ======= SLAED6 computes the positive or negative root (closest to the origin) of z(1) z(2) z(3) f(x) = rho + --------- + ---------- + --------- d(1)-x d(2)-x d(3)-x It is assumed that if ORGATI = .true. the root is between d(2) and d(3); otherwise it is between d(1) and d(2) This routine will be called by SLAED4 when necessary. In most cases, the root sought is the smallest in magnitude, though it might not be in some extremely rare situations. Arguments ========= KNITER (input) INTEGER Refer to SLAED4 for its significance. ORGATI (input) LOGICAL If ORGATI is true, the needed root is between d(2) and d(3); otherwise it is between d(1) and d(2). See SLAED4 for further details. RHO (input) REAL Refer to the equation f(x) above. D (input) REAL array, dimension (3) D satisfies d(1) < d(2) < d(3). Z (input) REAL array, dimension (3) Each of the elements in z must be positive. FINIT (input) REAL The value of f at 0. It is more accurate than the one evaluated inside this routine (if someone wants to do so). TAU (output) REAL The root of the equation f(x). INFO (output) INTEGER = 0: successful exit > 0: if INFO = 1, failure to converge Further Details =============== 30/06/99: Based on contributions by Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA 10/02/03: This version has a few statements commented out for thread safety (machine parameters are computed on each entry). SJH. 05/10/06: Modified from a new version of Ren-Cang Li, use Gragg-Thornton-Warner cubic convergent scheme for better stability. ===================================================================== Parameter adjustments */ --z__; --d__; /* Function Body */ *info = 0; if (*orgati) { lbd = d__[2]; ubd = d__[3]; } else { lbd = d__[1]; ubd = d__[2]; } if (*finit < 0.f) { lbd = 0.f; } else { ubd = 0.f; } niter = 1; *tau = 0.f; if (*kniter == 2) { if (*orgati) { temp = (d__[3] - d__[2]) / 2.f; c__ = *rho + z__[1] / (d__[1] - d__[2] - temp); a = c__ * (d__[2] + d__[3]) + z__[2] + z__[3]; b = c__ * d__[2] * d__[3] + z__[2] * d__[3] + z__[3] * d__[2]; } else { temp = (d__[1] - d__[2]) / 2.f; c__ = *rho + z__[3] / (d__[3] - d__[2] - temp); a = c__ * (d__[1] + d__[2]) + z__[1] + z__[2]; b = c__ * d__[1] * d__[2] + z__[1] * d__[2] + z__[2] * d__[1]; } /* Computing MAX */ r__1 = dabs(a), r__2 = dabs(b), r__1 = max(r__1,r__2), r__2 = dabs( c__); temp = dmax(r__1,r__2); a /= temp; b /= temp; c__ /= temp; if (c__ == 0.f) { *tau = b / a; } else if (a <= 0.f) { *tau = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) / ( c__ * 2.f); } else { *tau = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs( r__1)))); } if (*tau < lbd || *tau > ubd) { *tau = (lbd + ubd) / 2.f; } if (d__[1] == *tau || d__[2] == *tau || d__[3] == *tau) { *tau = 0.f; } else { temp = *finit + *tau * z__[1] / (d__[1] * (d__[1] - *tau)) + *tau * z__[2] / (d__[2] * (d__[2] - *tau)) + *tau * z__[3] / ( d__[3] * (d__[3] - *tau)); if (temp <= 0.f) { lbd = *tau; } else { ubd = *tau; } if (dabs(*finit) <= dabs(temp)) { *tau = 0.f; } } } /* get machine parameters for possible scaling to avoid overflow modified by Sven: parameters SMALL1, SMINV1, SMALL2, SMINV2, EPS are not SAVEd anymore between one call to the others but recomputed at each call */ eps = slamch_("Epsilon"); base = slamch_("Base"); i__1 = (integer) (log(slamch_("SafMin")) / log(base) / 3.f); small1 = pow_ri(&base, &i__1); sminv1 = 1.f / small1; small2 = small1 * small1; sminv2 = sminv1 * sminv1; /* Determine if scaling of inputs necessary to avoid overflow when computing 1/TEMP**3 */ if (*orgati) { /* Computing MIN */ r__3 = (r__1 = d__[2] - *tau, dabs(r__1)), r__4 = (r__2 = d__[3] - * tau, dabs(r__2)); temp = dmin(r__3,r__4); } else { /* Computing MIN */ r__3 = (r__1 = d__[1] - *tau, dabs(r__1)), r__4 = (r__2 = d__[2] - * tau, dabs(r__2)); temp = dmin(r__3,r__4); } scale = FALSE_; if (temp <= small1) { scale = TRUE_; if (temp <= small2) { /* Scale up by power of radix nearest 1/SAFMIN**(2/3) */ sclfac = sminv2; sclinv = small2; } else { /* Scale up by power of radix nearest 1/SAFMIN**(1/3) */ sclfac = sminv1; sclinv = small1; } /* Scaling up safe because D, Z, TAU scaled elsewhere to be O(1) */ for (i__ = 1; i__ <= 3; ++i__) { dscale[i__ - 1] = d__[i__] * sclfac; zscale[i__ - 1] = z__[i__] * sclfac; /* L10: */ } *tau *= sclfac; lbd *= sclfac; ubd *= sclfac; } else { /* Copy D and Z to DSCALE and ZSCALE */ for (i__ = 1; i__ <= 3; ++i__) { dscale[i__ - 1] = d__[i__]; zscale[i__ - 1] = z__[i__]; /* L20: */ } } fc = 0.f; df = 0.f; ddf = 0.f; for (i__ = 1; i__ <= 3; ++i__) { temp = 1.f / (dscale[i__ - 1] - *tau); temp1 = zscale[i__ - 1] * temp; temp2 = temp1 * temp; temp3 = temp2 * temp; fc += temp1 / dscale[i__ - 1]; df += temp2; ddf += temp3; /* L30: */ } f = *finit + *tau * fc; if (dabs(f) <= 0.f) { goto L60; } if (f <= 0.f) { lbd = *tau; } else { ubd = *tau; } /* Iteration begins -- Use Gragg-Thornton-Warner cubic convergent scheme It is not hard to see that 1) Iterations will go up monotonically if FINIT < 0; 2) Iterations will go down monotonically if FINIT > 0. */ iter = niter + 1; for (niter = iter; niter <= 40; ++niter) { if (*orgati) { temp1 = dscale[1] - *tau; temp2 = dscale[2] - *tau; } else { temp1 = dscale[0] - *tau; temp2 = dscale[1] - *tau; } a = (temp1 + temp2) * f - temp1 * temp2 * df; b = temp1 * temp2 * f; c__ = f - (temp1 + temp2) * df + temp1 * temp2 * ddf; /* Computing MAX */ r__1 = dabs(a), r__2 = dabs(b), r__1 = max(r__1,r__2), r__2 = dabs( c__); temp = dmax(r__1,r__2); a /= temp; b /= temp; c__ /= temp; if (c__ == 0.f) { eta = b / a; } else if (a <= 0.f) { eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) / ( c__ * 2.f); } else { eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs( r__1)))); } if (f * eta >= 0.f) { eta = -f / df; } *tau += eta; if (*tau < lbd || *tau > ubd) { *tau = (lbd + ubd) / 2.f; } fc = 0.f; erretm = 0.f; df = 0.f; ddf = 0.f; for (i__ = 1; i__ <= 3; ++i__) { temp = 1.f / (dscale[i__ - 1] - *tau); temp1 = zscale[i__ - 1] * temp; temp2 = temp1 * temp; temp3 = temp2 * temp; temp4 = temp1 / dscale[i__ - 1]; fc += temp4; erretm += dabs(temp4); df += temp2; ddf += temp3; /* L40: */ } f = *finit + *tau * fc; erretm = (dabs(*finit) + dabs(*tau) * erretm) * 8.f + dabs(*tau) * df; if (dabs(f) <= eps * erretm) { goto L60; } if (f <= 0.f) { lbd = *tau; } else { ubd = *tau; } /* L50: */ } *info = 1; L60: /* Undo scaling */ if (scale) { *tau *= sclinv; } return 0; /* End of SLAED6 */ } /* slaed6_ */