#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int dlatrd_(char *uplo, integer *n, integer *nb, doublereal * a, integer *lda, doublereal *e, doublereal *tau, doublereal *w, integer *ldw) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= DLATRD reduces NB rows and columns of a real symmetric matrix A to symmetric tridiagonal form by an orthogonal similarity transformation Q' * A * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A. If UPLO = 'U', DLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = 'L', DLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by DSYTRD. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The order of the matrix A. NB (input) INTEGER The number of rows and columns to be reduced. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit: if UPLO = 'U', the last NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements above the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = 'L', the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements below the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= (1,N). E (output) DOUBLE PRECISION array, dimension (N-1) If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal elements of the last NB columns of the reduced matrix; if UPLO = 'L', E(1:nb) contains the subdiagonal elements of the first NB columns of the reduced matrix. TAU (output) DOUBLE PRECISION array, dimension (N-1) The scalar factors of the elementary reflectors, stored in TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. See Further Details. W (output) DOUBLE PRECISION array, dimension (LDW,NB) The n-by-nb matrix W required to update the unreduced part of A. LDW (input) INTEGER The leading dimension of the array W. LDW >= max(1,N). Further Details =============== If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), and tau in TAU(i-1). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and tau in TAU(i). The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a symmetric rank-2k update of the form: A := A - V*W' - W*V'. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = 'U': if UPLO = 'L': ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i). ===================================================================== Quick return if possible Parameter adjustments */ /* Table of constant values */ static doublereal c_b5 = -1.; static doublereal c_b6 = 1.; static integer c__1 = 1; static doublereal c_b16 = 0.; /* System generated locals */ integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3; /* Local variables */ static integer i__, iw; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); static doublereal alpha; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), dsymv_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --e; --tau; w_dim1 = *ldw; w_offset = 1 + w_dim1; w -= w_offset; /* Function Body */ if (*n <= 0) { return 0; } if (lsame_(uplo, "U")) { /* Reduce last NB columns of upper triangle */ i__1 = *n - *nb + 1; for (i__ = *n; i__ >= i__1; --i__) { iw = i__ - *n + *nb; if (i__ < *n) { /* Update A(1:i,i) */ i__2 = *n - i__; dgemv_("No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, & c_b6, &a[i__ * a_dim1 + 1], &c__1); i__2 = *n - i__; dgemv_("No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, & c_b6, &a[i__ * a_dim1 + 1], &c__1); } if (i__ > 1) { /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */ i__2 = i__ - 1; dlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 + 1], &c__1, &tau[i__ - 1]); e[i__ - 1] = a[i__ - 1 + i__ * a_dim1]; a[i__ - 1 + i__ * a_dim1] = 1.; /* Compute W(1:i-1,i) */ i__2 = i__ - 1; dsymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], & c__1); if (i__ < *n) { i__2 = i__ - 1; i__3 = *n - i__; dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, & c_b16, &w[i__ + 1 + iw * w_dim1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, & c_b16, &w[i__ + 1 + iw * w_dim1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) * w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1); } i__2 = i__ - 1; dscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1); i__2 = i__ - 1; alpha = tau[i__ - 1] * -.5 * ddot_(&i__2, &w[iw * w_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &c__1); i__2 = i__ - 1; daxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * w_dim1 + 1], &c__1); } /* L10: */ } } else { /* Reduce first NB columns of lower triangle */ i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { /* Update A(i:n,i) */ i__2 = *n - i__ + 1; i__3 = i__ - 1; dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda, &w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], & c__1); i__2 = *n - i__ + 1; i__3 = i__ - 1; dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw, &a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], & c__1); if (i__ < *n) { /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */ i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__]); e[i__] = a[i__ + 1 + i__ * a_dim1]; a[i__ + 1 + i__ * a_dim1] = 1.; /* Compute W(i+1:n,i) */ i__2 = *n - i__; dsymv_("Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1] , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ i__ * w_dim1 + 1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ i__ * w_dim1 + 1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 + w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; dscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; alpha = tau[i__] * -.5 * ddot_(&i__2, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1); i__2 = *n - i__; daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[ i__ + 1 + i__ * w_dim1], &c__1); } /* L20: */ } } return 0; /* End of DLATRD */ } /* dlatrd_ */