#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int dlasq1_(integer *n, doublereal *d__, doublereal *e, doublereal *work, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= DLASQ1 computes the singular values of a real N-by-N bidiagonal matrix with diagonal D and off-diagonal E. The singular values are computed to high relative accuracy, in the absence of denormalization, underflow and overflow. The algorithm was first presented in "Accurate singular values and differential qd algorithms" by K. V. Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230, 1994, and the present implementation is described in "An implementation of the dqds Algorithm (Positive Case)", LAPACK Working Note. Arguments ========= N (input) INTEGER The number of rows and columns in the matrix. N >= 0. D (input/output) DOUBLE PRECISION array, dimension (N) On entry, D contains the diagonal elements of the bidiagonal matrix whose SVD is desired. On normal exit, D contains the singular values in decreasing order. E (input/output) DOUBLE PRECISION array, dimension (N) On entry, elements E(1:N-1) contain the off-diagonal elements of the bidiagonal matrix whose SVD is desired. On exit, E is overwritten. WORK (workspace) DOUBLE PRECISION array, dimension (4*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: the algorithm failed = 1, a split was marked by a positive value in E = 2, current block of Z not diagonalized after 30*N iterations (in inner while loop) = 3, termination criterion of outer while loop not met (program created more than N unreduced blocks) ===================================================================== Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__0 = 0; /* System generated locals */ integer i__1, i__2; doublereal d__1, d__2, d__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer i__; static doublereal eps; extern /* Subroutine */ int dlas2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); static doublereal scale; static integer iinfo; static doublereal sigmn; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static doublereal sigmx; extern /* Subroutine */ int dlasq2_(integer *, doublereal *, integer *); extern doublereal dlamch_(char *); extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); static doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *), dlasrt_( char *, integer *, doublereal *, integer *); --work; --e; --d__; /* Function Body */ *info = 0; if (*n < 0) { *info = -2; i__1 = -(*info); xerbla_("DLASQ1", &i__1); return 0; } else if (*n == 0) { return 0; } else if (*n == 1) { d__[1] = abs(d__[1]); return 0; } else if (*n == 2) { dlas2_(&d__[1], &e[1], &d__[2], &sigmn, &sigmx); d__[1] = sigmx; d__[2] = sigmn; return 0; } /* Estimate the largest singular value. */ sigmx = 0.; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = (d__1 = d__[i__], abs(d__1)); /* Computing MAX */ d__2 = sigmx, d__3 = (d__1 = e[i__], abs(d__1)); sigmx = max(d__2,d__3); /* L10: */ } d__[*n] = (d__1 = d__[*n], abs(d__1)); /* Early return if SIGMX is zero (matrix is already diagonal). */ if (sigmx == 0.) { dlasrt_("D", n, &d__[1], &iinfo); return 0; } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ d__1 = sigmx, d__2 = d__[i__]; sigmx = max(d__1,d__2); /* L20: */ } /* Copy D and E into WORK (in the Z format) and scale (squaring the input data makes scaling by a power of the radix pointless). */ eps = dlamch_("Precision"); safmin = dlamch_("Safe minimum"); scale = sqrt(eps / safmin); dcopy_(n, &d__[1], &c__1, &work[1], &c__2); i__1 = *n - 1; dcopy_(&i__1, &e[1], &c__1, &work[2], &c__2); i__1 = (*n << 1) - 1; i__2 = (*n << 1) - 1; dlascl_("G", &c__0, &c__0, &sigmx, &scale, &i__1, &c__1, &work[1], &i__2, &iinfo); /* Compute the q's and e's. */ i__1 = (*n << 1) - 1; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing 2nd power */ d__1 = work[i__]; work[i__] = d__1 * d__1; /* L30: */ } work[*n * 2] = 0.; dlasq2_(n, &work[1], info); if (*info == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = sqrt(work[i__]); /* L40: */ } dlascl_("G", &c__0, &c__0, &scale, &sigmx, n, &c__1, &d__[1], n, & iinfo); } return 0; /* End of DLASQ1 */ } /* dlasq1_ */