#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int cungtr_(char *uplo, integer *n, complex *a, integer *lda, complex *tau, complex *work, integer *lwork, integer *info ) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CUNGTR generates a complex unitary matrix Q which is defined as the product of n-1 elementary reflectors of order N, as returned by CHETRD: if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). Arguments ========= UPLO (input) CHARACTER*1 = 'U': Upper triangle of A contains elementary reflectors from CHETRD; = 'L': Lower triangle of A contains elementary reflectors from CHETRD. N (input) INTEGER The order of the matrix Q. N >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by CHETRD. On exit, the N-by-N unitary matrix Q. LDA (input) INTEGER The leading dimension of the array A. LDA >= N. TAU (input) COMPLEX array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CHETRD. WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= N-1. For optimum performance LWORK >= (N-1)*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ static integer i__, j, nb; extern logical lsame_(char *, char *); static integer iinfo; static logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int cungql_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); static integer lwkopt; static logical lquery; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *n - 1; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -7; } } if (*info == 0) { if (upper) { i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "CUNGQL", " ", &i__1, &i__2, &i__3, &c_n1, ( ftnlen)6, (ftnlen)1); } else { i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "CUNGQR", " ", &i__1, &i__2, &i__3, &c_n1, ( ftnlen)6, (ftnlen)1); } /* Computing MAX */ i__1 = 1, i__2 = *n - 1; lwkopt = max(i__1,i__2) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CUNGTR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1].r = 1.f, work[1].i = 0.f; return 0; } if (upper) { /* Q was determined by a call to CHETRD with UPLO = 'U' Shift the vectors which define the elementary reflectors one column to the left, and set the last row and column of Q to those of the unit matrix */ i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + (j + 1) * a_dim1; a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i; /* L10: */ } i__2 = *n + j * a_dim1; a[i__2].r = 0.f, a[i__2].i = 0.f; /* L20: */ } i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + *n * a_dim1; a[i__2].r = 0.f, a[i__2].i = 0.f; /* L30: */ } i__1 = *n + *n * a_dim1; a[i__1].r = 1.f, a[i__1].i = 0.f; /* Generate Q(1:n-1,1:n-1) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; cungql_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &work[1], lwork, &iinfo); } else { /* Q was determined by a call to CHETRD with UPLO = 'L'. Shift the vectors which define the elementary reflectors one column to the right, and set the first row and column of Q to those of the unit matrix */ for (j = *n; j >= 2; --j) { i__1 = j * a_dim1 + 1; a[i__1].r = 0.f, a[i__1].i = 0.f; i__1 = *n; for (i__ = j + 1; i__ <= i__1; ++i__) { i__2 = i__ + j * a_dim1; i__3 = i__ + (j - 1) * a_dim1; a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i; /* L40: */ } /* L50: */ } i__1 = a_dim1 + 1; a[i__1].r = 1.f, a[i__1].i = 0.f; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { i__2 = i__ + a_dim1; a[i__2].r = 0.f, a[i__2].i = 0.f; /* L60: */ } if (*n > 1) { /* Generate Q(2:n,2:n) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; cungqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[1], &work[1], lwork, &iinfo); } } work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CUNGTR */ } /* cungtr_ */